Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

30.07.2008
Northeastern University scientists discovered a revolutionary method for producing Samarium Cobalt rare earth permanent magnet materials. Unlike current industry methods, the invention yields a one-step, cost-effective, 100% recyclable, scalable method to produce ultra-strong magnets that can not only revitalize the permanent magnet industry, but can also bring major changes to several federal and commercial industries.

Ultra-strong, high-temperature, high-performance permanent magnet compounds, such as Samarium Cobalt, are the mainstay materials for several industries that rely on high-performance motor and power generation applications, including the Department of Defense (DOD) and the automotive industry.

Until now, producing Samarium Cobalt has been a difficult and expensive multi-step process. Northeastern University researchers have broken new ground with an innovative invention of a rapid, high-volume and cost-effective one-step method for producing pure Samarium Cobalt rare earth permanent magnet materials.

Invented by lead scientist C.N. Chinnasamy, Ph.D., at Northeastern’s Center for Microwave Magnetic Materials and Integrated Circuits, the direct chemical synthesis process is able to produce Samarium Cobalt rapidly and in large amounts, at a small fraction of the cost of the current industry method. Also, the process is environmentally friendly, with 100% recyclable chemicals, and readily scalable to large volume synthesis to meet the needs for the myriad of advanced permanent magnet applications. The study describing the invention is published in the latest issue of Applied Physics Letters (July 28, 2008).

“A single step chemical process has been pursued for decades with little success,” said Vincent Harris, William Lincoln Smith Chair Professor and Director of the Center for Microwave Magnetic Materials and Integrated Circuits at Northeastern University and Principal Investigator of the program. “This research breakthrough represents a potentially disruptive step forward in the cost-effective processing of these important materials.”

Samarium Cobalt magnets are superior to other classes of permanent magnetic materials for advanced high-temperature applications and the Northeastern invention goes beyond the currently known fabrication process of these nanostructured magnets. Unlike the traditional multi-step metallurgical techniques that provide limited control of the size and shape of the final magnetic particles, the Northeastern scientists’ one-step method produces air-stable “nanoblades” (elongated nanoparticles shaped like blades) that allow for a more efficient assembly that may ultimately result in smaller and lighter magnets without sacrificing performance.

“Such unusually shaped particles should prove valuable in the processing of anisotropic magnets that are highly sought in many DOD and commercial applications and are anticipated to lead to lighter and more energy-efficient end products,” said C.N. Chinnasamy.

“Northeastern’s new one-step process has the potential to reduce complexity and associated costs of processing Samarium Cobalt magnets, which are used in many advanced DOD weapon systems,” said Richard T. Fingers, Ph.D., Chief, Energy Power Thermal Division of the Air Force Research Laboratory.

Underscoring the significance of the Northeastern invention relative to the high-performance rare earth magnet industry, Jinfang Liu, Ph.D., Vice President of Technology and Engineering at Electron Energy Corporation, a leading developer of permanent magnetic materials, added, “The development of stable Samarium Cobalt nanoparticles using this one-step chemical synthesis method may motivate more scientists and engineers to work on the development of next generation magnets.”

This revolutionary invention is anticipated to not only revitalize the permanent magnet industry, it has the potential to bring major changes to several federal and commercial industries, including its potential to impact the size, weight, and performance of aircraft, ships, and land-based vehicles, as well as contribute to more efficient computer technologies and emerging biomedical applications.

“This work represents the most promising advance in rare earth permanent magnet processing in many years,” said Laura Henderson Lewis, Professor of Chemical Engineering and Chair of the Department of Chemical Engineering at Northeastern University and a collaborator on this project. “I expect it to revitalize international interest in the development of this important class of engineering materials.”

Strongly aligned with the goals set forth in Northeastern University’s Academic Plan, this invention has the potential to serve global and societal needs by crossing national boundaries and having a significant impact on the engineering discipline through academia and industry.

About Northeastern
Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions. For more information, please visit http://www.northeastern.edu.

Renata Nyul | Newswise Science News
Further information:
http://www.northeastern.edu

More articles from Materials Sciences:

nachricht Siberian scientists suggested a new method for synthesizing a promising magnetic material
23.01.2018 | Siberian Federal University

nachricht Complex tessellations, extraordinary materials
23.01.2018 | Technische Universität München

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>