Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight to demineralization

09.07.2008
Scientists demonstrate amorphous silica dissolves by pathway similar to crystals

From toothpaste to technology, noncrystalline or amorphous silica is an active ingredient in a myriad of products that we use in our daily lives. As a minor, but essential component of vertebrate bone, an understanding of silica reactivity in physiological environments is crucial to the development of successful biomedical implants and synthetic materials with bone-like properties.

One ongoing question is why solutions of water containing simple table salt or other electrolyte compounds (as in blood plasma for example) are able to break down noncrystalline silicas at speeds far faster than expected. Rates of decomposition by processes known as dissolution, or demineralization, are up to 100 times faster when the solutions contain little dissolved silica and suggest a means for controlling the speed of removal. Yet, traditional theory would say that the durability of amorphous solids, such as silica glasses, should change by a simple proportion to the amount of silica present in the dissolving solution.

In the July 7 , 2008 Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS), Patricia Dove, professor of geosciences in the College of Science at Virginia Tech, and postdoctoral scientists Nizhou Han and Adam Wallace report that amorphous silica can dissolve by a nucleation process that was previously only viewed as possible in crystalline materials. The result is a very large increase in the rate of removal of ions from the surface of silica, which would not be predicted by classical theory.

In collaboration with James De Yoreo at the Molecular Foundry of the Lawrence Berkeley Laboratory, the Virginia Tech researchers demonstrate that structural order is not a requirement for a crystal-based model to describe dissolution when the reacting silica units are defined in terms of their coordination to the surface.

"This finding would seem heretical from the viewpoint of traditional thinking because classical nucleation theory is rooted in the concept that dissolution and growth occur by overcoming a barrier to forming a new phase within an existing phase," said Dove. "Because the transfer of units from a disordered amorphous surface to solution always leaves the surface free energy unchanged, the origin of a comparable energy barrier presents a paradox that is not easy to understand."

Using experimental and theoretical analyses, the paper explains this paradox and the dissolution behavior of silica glasses manufactured by different processes, a natural biologically produced silica, and a synthetic, dispersed or colloidal silica. Their findings present the basis for understanding how simple modulations in solution chemistry can tune the durability of silica in humid or wet environments. Moreover, the insights suggest a means by which one could use simple, environmentally benign solutions to regulate surface roughness at the nanoscale. "One example would be to add texture to a substrate surface for a biomedical application," said Dove "Or another could be to use a salt solution to clean a silica surface without toxic chemical compounds."

Susan Trulove | EurekAlert!
Further information:
http://www.geochem.geos.vt.edu/bgep/
http://www.vt.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>