Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering Students’ Airplane Research Is Crystal Clear

25.06.2008
An engineering team at Rowan University has created ice clouds in an ice cloud chamber as a way to work toward preventing some airplane crashes.

Forget delays, lines and ticket costs — for many people, flying isn’t just an aggravation, it’s an outright phobia.

Thanks to research conducted by an engineering professor and College of Engineering students at Rowan University (Glassboro, N.J.), those airplane passengers may be a little less fearful in the future.

The Rowan team has been focusing on ice clouds and crystals, which can contribute to plane crashes. Some crashes occur because ice crystals collect on a plane’s wings as it passes through a cloud, causing the shape of the wing to change, reducing the lift force needed for flying.

Though these clouds pose a serious threat to airplanes, there is no way to determine which clouds are hazardous to fly through. Enter Rowan engineers.

The team has re-created ice clouds in an ice cloud chamber on a small scale, successfully forming ice crystals with the same characteristics of those in nature. Using these lab-created crystals, they can project a laser beam through the chamber, measuring its change in polarization, which is dependent on the size, shape and distribution of ice crystals in the cloud. The polarization state of light is invisible to the naked eye, but measurable using sensitive lenses and photodetectors. Eventually, this process could enable a pilot to use low-power lasers to detect the crystals in time to allow the plane to avoid the crystal-bearing clouds.

“No one has previously done what we are doing in terms of this lab scale and the ability to vary as many elements,” said Todd Nilsen, a 20-year-old (spring semester 2008) junior from Brick studying mechanical engineering and a member of the team that worked on the project.

Other members of the team during the past year were:

• Metin Ahiskali, an electrical and computer engineering senior from Randolph
• Matthew Costill, 23, of Mantua, a senior chemical engineering major
• Anthony LaBarck, 21, of Vernon, a senior mechanical engineering major
• Joseph Urcinas, 20, of Flemington, a junior mechanical engineering major
• Shawn Sacks, a civil engineering junior from West Berlin
• Rane Pierson, an electrical and computer engineering senior from Sparta
• Dr. Paris VonLockette, advisor for the project and associate professor of mechanical engineering

During the course of two semesters, the team constructed an insulated Plexiglas unit—the ice cloud chamber—to house the ice crystals they would create using liquid nitrogen and water, chilling the chamber to a literally freezing -40 degrees Celsius. The entire system is computer-controlled. A microscope attached to the unit allowed the team to magnify the 40-micron crystals, which are roughly as wide as a human hair, and then take pictures.

After producing the ice cloud in the chamber, a laser beam is directed into the unit. The light that bounces back from the ice crystals, called backscattered light, passes into a detector. The data that are collected from this process can be used to determine which clouds contain ice crystals detrimental to airplane flight.

Thus far, the team has successfully re-created the ice crystals that have characteristics that are needed for further research. This is a significant step toward providing a method to detect the specific crystals in the path of aircrafts. The ability to re-create ice crystals that have the same characteristics as those found in nature, on such a small scale, enables further research by other companies with little financial burden.

The team’s research was sponsored by a $5,000 grant from R.L. Associates, Inc., a research and development company specializing in optical technology located in Chester, Pa.

Patricia Quigley | newswise
Further information:
http://www.rowan.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>