Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering Students’ Airplane Research Is Crystal Clear

25.06.2008
An engineering team at Rowan University has created ice clouds in an ice cloud chamber as a way to work toward preventing some airplane crashes.

Forget delays, lines and ticket costs — for many people, flying isn’t just an aggravation, it’s an outright phobia.

Thanks to research conducted by an engineering professor and College of Engineering students at Rowan University (Glassboro, N.J.), those airplane passengers may be a little less fearful in the future.

The Rowan team has been focusing on ice clouds and crystals, which can contribute to plane crashes. Some crashes occur because ice crystals collect on a plane’s wings as it passes through a cloud, causing the shape of the wing to change, reducing the lift force needed for flying.

Though these clouds pose a serious threat to airplanes, there is no way to determine which clouds are hazardous to fly through. Enter Rowan engineers.

The team has re-created ice clouds in an ice cloud chamber on a small scale, successfully forming ice crystals with the same characteristics of those in nature. Using these lab-created crystals, they can project a laser beam through the chamber, measuring its change in polarization, which is dependent on the size, shape and distribution of ice crystals in the cloud. The polarization state of light is invisible to the naked eye, but measurable using sensitive lenses and photodetectors. Eventually, this process could enable a pilot to use low-power lasers to detect the crystals in time to allow the plane to avoid the crystal-bearing clouds.

“No one has previously done what we are doing in terms of this lab scale and the ability to vary as many elements,” said Todd Nilsen, a 20-year-old (spring semester 2008) junior from Brick studying mechanical engineering and a member of the team that worked on the project.

Other members of the team during the past year were:

• Metin Ahiskali, an electrical and computer engineering senior from Randolph
• Matthew Costill, 23, of Mantua, a senior chemical engineering major
• Anthony LaBarck, 21, of Vernon, a senior mechanical engineering major
• Joseph Urcinas, 20, of Flemington, a junior mechanical engineering major
• Shawn Sacks, a civil engineering junior from West Berlin
• Rane Pierson, an electrical and computer engineering senior from Sparta
• Dr. Paris VonLockette, advisor for the project and associate professor of mechanical engineering

During the course of two semesters, the team constructed an insulated Plexiglas unit—the ice cloud chamber—to house the ice crystals they would create using liquid nitrogen and water, chilling the chamber to a literally freezing -40 degrees Celsius. The entire system is computer-controlled. A microscope attached to the unit allowed the team to magnify the 40-micron crystals, which are roughly as wide as a human hair, and then take pictures.

After producing the ice cloud in the chamber, a laser beam is directed into the unit. The light that bounces back from the ice crystals, called backscattered light, passes into a detector. The data that are collected from this process can be used to determine which clouds contain ice crystals detrimental to airplane flight.

Thus far, the team has successfully re-created the ice crystals that have characteristics that are needed for further research. This is a significant step toward providing a method to detect the specific crystals in the path of aircrafts. The ability to re-create ice crystals that have the same characteristics as those found in nature, on such a small scale, enables further research by other companies with little financial burden.

The team’s research was sponsored by a $5,000 grant from R.L. Associates, Inc., a research and development company specializing in optical technology located in Chester, Pa.

Patricia Quigley | newswise
Further information:
http://www.rowan.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>