Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineering Students’ Airplane Research Is Crystal Clear

An engineering team at Rowan University has created ice clouds in an ice cloud chamber as a way to work toward preventing some airplane crashes.

Forget delays, lines and ticket costs — for many people, flying isn’t just an aggravation, it’s an outright phobia.

Thanks to research conducted by an engineering professor and College of Engineering students at Rowan University (Glassboro, N.J.), those airplane passengers may be a little less fearful in the future.

The Rowan team has been focusing on ice clouds and crystals, which can contribute to plane crashes. Some crashes occur because ice crystals collect on a plane’s wings as it passes through a cloud, causing the shape of the wing to change, reducing the lift force needed for flying.

Though these clouds pose a serious threat to airplanes, there is no way to determine which clouds are hazardous to fly through. Enter Rowan engineers.

The team has re-created ice clouds in an ice cloud chamber on a small scale, successfully forming ice crystals with the same characteristics of those in nature. Using these lab-created crystals, they can project a laser beam through the chamber, measuring its change in polarization, which is dependent on the size, shape and distribution of ice crystals in the cloud. The polarization state of light is invisible to the naked eye, but measurable using sensitive lenses and photodetectors. Eventually, this process could enable a pilot to use low-power lasers to detect the crystals in time to allow the plane to avoid the crystal-bearing clouds.

“No one has previously done what we are doing in terms of this lab scale and the ability to vary as many elements,” said Todd Nilsen, a 20-year-old (spring semester 2008) junior from Brick studying mechanical engineering and a member of the team that worked on the project.

Other members of the team during the past year were:

• Metin Ahiskali, an electrical and computer engineering senior from Randolph
• Matthew Costill, 23, of Mantua, a senior chemical engineering major
• Anthony LaBarck, 21, of Vernon, a senior mechanical engineering major
• Joseph Urcinas, 20, of Flemington, a junior mechanical engineering major
• Shawn Sacks, a civil engineering junior from West Berlin
• Rane Pierson, an electrical and computer engineering senior from Sparta
• Dr. Paris VonLockette, advisor for the project and associate professor of mechanical engineering

During the course of two semesters, the team constructed an insulated Plexiglas unit—the ice cloud chamber—to house the ice crystals they would create using liquid nitrogen and water, chilling the chamber to a literally freezing -40 degrees Celsius. The entire system is computer-controlled. A microscope attached to the unit allowed the team to magnify the 40-micron crystals, which are roughly as wide as a human hair, and then take pictures.

After producing the ice cloud in the chamber, a laser beam is directed into the unit. The light that bounces back from the ice crystals, called backscattered light, passes into a detector. The data that are collected from this process can be used to determine which clouds contain ice crystals detrimental to airplane flight.

Thus far, the team has successfully re-created the ice crystals that have characteristics that are needed for further research. This is a significant step toward providing a method to detect the specific crystals in the path of aircrafts. The ability to re-create ice crystals that have the same characteristics as those found in nature, on such a small scale, enables further research by other companies with little financial burden.

The team’s research was sponsored by a $5,000 grant from R.L. Associates, Inc., a research and development company specializing in optical technology located in Chester, Pa.

Patricia Quigley | newswise
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>