Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A plane with wings of glass?

24.06.2008
Imagine a plane that has wings made out of glass; thanks to a major breakthrough in understanding the nature of glass by scientists at the University of Bristol, this has just become a possibility

Despite its solid appearance, glass is actually a 'jammed' state of matter that moves very slowly. Like cars in a traffic jam, atoms in a glass can't reach their destination because the route is blocked by their neighbours, so it never quite becomes a 'proper' solid.

For more than 50 years most scientists have tried to understand just what glass is. Work so far has concentrated on trying to understand the traffic jam, but now Dr Paddy Royall from the University of Bristol, with colleagues in Canberra and Tokyo, has shown that the problem really lies with the destination, not with the traffic jam.

Publishing today (22 June 2008) in Nature Materials, the team has revealed that glass 'fails' to be a solid due to the special atomic structures that form in a glass when it cools (ie, when the atoms arrive at their destination).

Royall explained: "Some materials crystallize as they cool, arranging their atoms into a highly regular pattern called a lattice. But although glass 'wants' to be a crystal, as it cools the atoms become jammed in a nearly random arrangement, preventing it from forming a regular lattice.

"Back in the 1950s, Sir Charles Frank in the Physics Department at Bristol University suggested that the arrangement of the 'jam' should form what is known as an icosahedron, but at the time he was unable to provide experimental proof. We set out to see if he was right."

The problem is you can't watch what happens to atoms as they cool because they are just too small. So using special particles called colloids that mimic atoms, but are just large enough to be visible using state-of-the-art microscopy, Royall cooled some down and watched what happened.

What he found was that the gel these particles formed also 'wants' to be a crystal, but it fails to become one due to the formation of icosahedra-like structures – exactly as Frank had predicted 50 years ago. It is the formation of these structures that underlie jammed materials and explains why a glass is a glass and not a liquid – or a solid.

Knowing the structure formed by atoms as a glass cools represents a major breakthrough in our understanding of meta-stable materials and will allow further development of new materials such as metallic glasses.

Metals normally crystallize when they cool, unfortunately stress builds up along the boundaries between crystals, which leads to metal failure. For example, the world's first jetliner, the British built De Havilland Comet, fell out of the sky due to metal failure. If a metal could be made to cool with the same internal structure as a glass and without crystal grain boundaries, it would be less likely to fail.

Metallic glasses could be suitable for a whole range of products that need to be flexible such as aircraft wings, golf clubs and engine parts.

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk
http://www.bris.ac.uk/fluff/u/inclel/wx8o0h7FlPG9gs9g7RjgZgwc/

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>