Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Super multi-use minerals unveiled

This material forms around a third of the average packet of washing powder and helps refine 99 per cent of the world's petrol*.

It is also used to clean up nuclear waste. This extremely useful material is a zeolite. In its natural form it originates from volcanoes but it is synthesised for commercial purposes. A European team of scientists has revealed, for the first time, its chemical structure using the ESRF. This research, published in Nature Materials on 22 June, opens doors to more effective zeolites in the future.

Zeolites are crystalline white minerals, mostly made of aluminium, silicon and oxygen. Their structure is like molecular scaffolding, similar to a sieve. Thanks to this structure, they are frequently used as a “molecular sieve”. This means that with their pores they can separate different molecules and cause different reactions, which are crucial in treating petrol and producing chemicals. Zeolites can also provoke ion exchange, which is useful in water softening or in the removal of nuclear waste (by filtering the radioactive components).

Due to their importance in industry, there is extensive research on zeolites world-wide. However, a crucial aspect about these minerals is still not known. Their functioning and effectiveness depends on different parameters, such as the size of their pores and the distribution of aluminium in the structure of the zeolites. However, the location of the active aluminium remains unknown in many of these materials.

The team from the ETH Zurich, the European Synchrotron Radiation Facility (ESRF), Diamond Light source, the University of Torino and the University of Hamburg have determined unambiguously and directly the distribution of aluminium in zeolites using the technique of X-rays standing wave at the ESRF.

The object of the study was a scolecite zeolite, a natural mineral stemming from the zeolite-rich region of Puna in India. Natural zeolites are not so commonly used in industry because they tend to have more impurities than those synthesised, but they can be used in cleaning nuclear waste. After the Chernobyl catastrophe, tons of zeolites were used with the aim of cleaning the radioactively contaminated area.

The results from the experiments at the ESRF show optimism for the future of zeolites. “By being able to answer the question of where the active sites are, we open up the door to understanding the structure–performance relation. This will lead to ways of improving synthetic zeolites”, explains Jeroen van Bokhoven, corresponding author of the article in Nature Materials.

The next challenge for the team is to study synthetic zeolites with the same technique. Whilst natural zeolites, such as scolecite, contain crystals in the millimetre range, the synthetic ones tend to have much smaller grains, often not larger than a few micrometres. “We have also begun to investigate an industrial synthesised zeolite, but the study is as of yet not complete”, explains Joerg Zegenhagen, in charge of the ESRF beamline where experiments were carried out. “We are currently developing the different beamline elements so that in the very near future we can have the same exhaustive amount of information for synthetic zeolites as for scolecite”, he concludes.

*According to Material World, BBC4, 19 January 2006.

Montserrat Capellas | alfa
Further information:

More articles from Materials Sciences:

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>