Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super multi-use minerals unveiled

23.06.2008
This material forms around a third of the average packet of washing powder and helps refine 99 per cent of the world's petrol*.

It is also used to clean up nuclear waste. This extremely useful material is a zeolite. In its natural form it originates from volcanoes but it is synthesised for commercial purposes. A European team of scientists has revealed, for the first time, its chemical structure using the ESRF. This research, published in Nature Materials on 22 June, opens doors to more effective zeolites in the future.

Zeolites are crystalline white minerals, mostly made of aluminium, silicon and oxygen. Their structure is like molecular scaffolding, similar to a sieve. Thanks to this structure, they are frequently used as a “molecular sieve”. This means that with their pores they can separate different molecules and cause different reactions, which are crucial in treating petrol and producing chemicals. Zeolites can also provoke ion exchange, which is useful in water softening or in the removal of nuclear waste (by filtering the radioactive components).

Due to their importance in industry, there is extensive research on zeolites world-wide. However, a crucial aspect about these minerals is still not known. Their functioning and effectiveness depends on different parameters, such as the size of their pores and the distribution of aluminium in the structure of the zeolites. However, the location of the active aluminium remains unknown in many of these materials.

The team from the ETH Zurich, the European Synchrotron Radiation Facility (ESRF), Diamond Light source, the University of Torino and the University of Hamburg have determined unambiguously and directly the distribution of aluminium in zeolites using the technique of X-rays standing wave at the ESRF.

The object of the study was a scolecite zeolite, a natural mineral stemming from the zeolite-rich region of Puna in India. Natural zeolites are not so commonly used in industry because they tend to have more impurities than those synthesised, but they can be used in cleaning nuclear waste. After the Chernobyl catastrophe, tons of zeolites were used with the aim of cleaning the radioactively contaminated area.

The results from the experiments at the ESRF show optimism for the future of zeolites. “By being able to answer the question of where the active sites are, we open up the door to understanding the structure–performance relation. This will lead to ways of improving synthetic zeolites”, explains Jeroen van Bokhoven, corresponding author of the article in Nature Materials.

The next challenge for the team is to study synthetic zeolites with the same technique. Whilst natural zeolites, such as scolecite, contain crystals in the millimetre range, the synthetic ones tend to have much smaller grains, often not larger than a few micrometres. “We have also begun to investigate an industrial synthesised zeolite, but the study is as of yet not complete”, explains Joerg Zegenhagen, in charge of the ESRF beamline where experiments were carried out. “We are currently developing the different beamline elements so that in the very near future we can have the same exhaustive amount of information for synthetic zeolites as for scolecite”, he concludes.

*According to Material World, BBC4, 19 January 2006.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/general/zeolites

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>