Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwave Synthesis Connects with the (Quantum) Dots

13.06.2008
Materials researchers at the National Institute of Standards and Technology (NIST) have developed a simplified, low-cost process for producing high-quality, water-soluble “quantum dots” for biological research.

By using a laboratory microwave reactor to promote the synthesis of the widely used nanomaterials, the recently published* NIST process avoids a problematic step in the conventional approach to making quantum dots, resulting in brighter, more stable dots.

Quantum dots are specially engineered nanoscale crystals of semiconductor compounds. The name comes from the fact that their infinitesimal size enables a quantum electronics effect that causes the crystals to fluoresce brilliantly at specific, sharply defined colors.

Bright, stable, tiny and tunable across a broad spectrum of colors, quantum dots that are engineered to attach themselves to particular proteins have become a popular research tool in areas such as cancer research for detecting, labeling and tracking specific biomarkers and cells.

Making good quantum dots for biological research is complex. First a semiconductor compound—typically a mixture of cadmium and selenium—must be induced to crystallize into discrete nanocrystals of just the right size. Cadmium is toxic, and the compound also can oxidize easily (ruining the effect), so the nanocrystals must be encapsulated in a protective shell such as zinc sulfide. To make them water soluble for biological applications, a short organic molecule called a “ligand” is attached to the zinc atoms. The organic ligand also serves as a tether to attach additional functional molecules that cause the dot to bind to specific proteins.

The accepted commercial method uses a high-temperature reaction (about 300 degrees Celsius) that must be carefully controlled under an inert gas atmosphere for the crystallization and encapsulation stages. An intermediate ligand material that can tolerate the high temperature is used to promote the crystallization process, but it must be chemically swapped afterwards for a different compound that makes the material water soluble. The ligand exchange step—as well as several variations on the process—is known to significantly alter the luminescence and stability of the resulting quantum dots.

Seeking a better method, NIST researchers turned to microwave-assisted chemistry. Microwaves have been employed in a variety of chemical reactions to reduce the required times and temperatures. Working at temperatures half those of commercial processes, the group developed a relatively simple two-stage process that requires no special atmospheric conditions and directly incorporates the water-soluble ligand into the shell without an exchange step. Using commercially available starting materials, they have synthesized highly uniform and efficient quantum dots for a range of frequencies and shown them to be stable in aqueous solutions for longer than four months.

* M.D. Roy, A.A. Herzing, S.H. De Paoli Lacerda and M,L. Becker. Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. Chemical Communications, 2008, 2106-2108.

Michael Baum | newswise
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>