Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New iron-based and copper-oxide high-temperature

30.05.2008
NIST's neutron facilities reveal intriguing similarities

In the initial studies of a new class of high-temperature superconductors discovered earlier this year, research at the Commerce Department’s National Institute of Standards and Technology (NIST) has revealed that new iron-based superconductors share similar unusual magnetic properties with previously known superconducting copper-oxide materials. The research appears in the May 28 Advanced Online Publication of the journal Nature.

These superconductors may one day enable energy and environmental gains because they could significantly heighten the efficiency of transferring electricity over the electric grid or storing electricity in off-peak hours for later use.

“While we still do not understand how magnetism and superconductivity are related in copper-oxide superconductors,” explains NIST Fellow Jeffrey Lynn at the NIST Center for Neutron Research (NCNR), “our measurements show that the new iron-based materials share what seems to be a critical interplay between magnetism and superconductivity.”

The importance of magnetism to high-temperature superconductors is remarkable because magnetism strongly interferes with conventional low-temperature superconductors. “Only a few magnetic impurities in the low-temperature superconductors sap the superconducting properties away,” says Lynn.

By contrast, copper-oxide superconductors, discovered in 1986, tolerate higher magnetic fields at higher temperatures. The highest performance copper-oxide superconductors conduct electricity without resistance when cooled to "transition temperatures" below 140 Kelvin (-133 Celsius) and can simply and cheaply be cooled by liquid nitrogen to 77 Kelvin or (-196 Celsius).

Japanese researchers discovered earlier this year that a new class of iron-based superconducting materials also had much higher transition temperatures than the conventional low-temperature superconductors. The discovery sent physicists and materials scientists into a renewed frenzy of activity reminiscent of the excitement brought on by the discovery of the first high-temperature superconductors over 20 years ago.

Earlier work on the copper-oxide superconductors revealed that they consist of magnetically active copper-oxygen layers, separated by layers of non-magnetic materials. By “doping,” or adding different elements to the non-magnetic layers of this normally insulating material, researchers can manipulate the magnetism to achieve electrical conduction and then superconductivity.

The group of scientists studying the iron-based superconductors used the NCNR, a facility that uses intense beams of neutral particles called neutrons to probe the atomic and magnetic structure of the new material.

As neutrons probed the iron-based sample supplied by materials scientists in Beijing, they revealed a magnetism that is similar to that found in copper-oxide superconductors, that is, layers of magnetic moments—like many individual bar magnets—interspersed with layers of nonmagnetic material. Lynn notes that the layered atomic structure of the iron-based systems, like the copper-oxide materials, makes it unlikely that these similarities are an accident.

One of the exciting aspects of these new superconductors is that they belong to a comprehensive class of materials where many chemical substitutions are possible. This versatility is already opening up new research avenues to understand the origin of the superconductivity, and should also enable the superconducting properties to be tailored for commercial technologies.

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>