NC State breakthrough results in super-hard nanocrystalline iron that can take the heat

Iron that is made up of nanoscale crystals is far stronger and harder than its traditional counterpart, but the benefits of this “nano-iron” have been limited by the fact that its nanocrystalline structure breaks down at relatively modest temperatures. But the NC State researchers have developed an iron-zirconium alloy that retains its nanocrystalline structures at temperatures above 1,300 degrees Celsius – approaching the melting point of iron.

Kris Darling, a Ph.D. student at NC State who led the project to develop the material, explains that the alloy’s ability to retain its nanocrystalline structure under high temperatures will allow for the material to be developed in bulk, because conventional methods of materials manufacture rely on heat and pressure.

In addition, Darling says the ability to work with the material at high temperatures will make it easier to form the alloy into useful shapes – for use as tools or in structural applications, such as engine parts.

The new alloy is also economically viable, since “it costs virtually the same amount to produce the alloy” as it does to create nano-iron, Darling says.

Dr. Carl C. Koch, an NC State professor of materials science engineering who worked on the project, explains that the alloy essentially consists of 1 percent zirconium and 99 percent iron. The zirconium allows the alloy to retain its nanocrystalline structure under high temperatures.

Media Contact

Matt Shipman EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors