Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Aim to Mitigate Impact of Unintended Hydrogen Leaks by Examining ‘Embrittlement’ Issues

Materials researchers across the globe have fervently been working to find the ideal hydrogen storage material, one that will safely and efficiently provide the needed range and running time for fuel cell vehicles. But a separate issue — hydrogen “embrittlement” — is an equally challenging technical hurdle that has gone largely unnoticed by the general public.

Researchers at Sandia National Laboratories in Livermore, Calif., however, have quietly been tackling the problem for years. Sandia is a National Nuclear Security Administration laboratory.

Hydrogen embrittlement is not unique to on-board storage, but automotive applications are the focus of Sandia’s current research. In terms of on-board storage, Sandia materials scientist Brian Somerday says hydrogen embrittlement can be defined as the cracking or fracturing of the outside wall of a hydrogen storage tank. It occurs because of the unique structure and absorption qualities of hydrogen and can lead to unintended leaks.

“Because of its small size, hydrogen can readily diffuse (scatter or disperse) into materials at room temperature,” says Somerday. “Other gas species can promote embrittlement of structural materials, but the mobility of hydrogen at room temperature makes it unique as an embrittling agent.”

This means the hydrogen is easily absorbed by other materials, which is a useful scientific phenomenon when the goal is to store hydrogen in a metal hydride material for onboard storage. “But for the automobile’s fuel tank itself,” says Somerday, “the risk of embrittlement – and subsequent leaks – is a concern.”

Materials scientists have been working on hydrogen embrittlement since long before the term “hydrogen highway” joined the vernacular.

“This is not a new phenomenon, but one that has been studied for decades,” says Somerday, who was hired by Sandia 10 years ago to work on hydrogen embrittlement in relation to gas transfer systems. Currently, his efforts support the FreedoomCAR and Fuel Partnership and are focused on low-cost steels, aluminum alloys, and stainless steels. His primary interest is what happens structurally to those materials when exposed to hydrogen.

“By measuring the structural properties of the materials, quantifying the degree by which they will degrade when stressed in hydrogen, and simulating the cracks that occur in the structural material, we can minimize the impact of the embrittlement through proper design,” says Somerday. The ultimate goal, he says, is to eliminate the possibility of embrittlement altogether.

A scientific level of understanding, he says, will help provide guidance for storing hydrogen for automotive purposes — whether in an onboard fuel tank, a storage tank at a refueling station, or piping that hydrogen might flow through between the two. The researchers, says Somerday, are interested in anything that might come in contact with high-pressure hydrogen. The results of Sandia’s research will facilitate decisions such as what structural materials to use for hydrogen storage and the lifespan of such materials.

Sandia, Somerday says, is one of only a few research institutions currently studying the embrittlement issue. One of its lab capabilities allows researchers to subject material specimens to dynamic loads in very high hydrogen gas pressures (other systems generally only offer much lower pressure capacities).

Due to his expertise and knowledge of the subject, Somerday will serve as a faculty member at the Third European Summer School on Hydrogen Safety, to beheld later this summer at the University of Ulster (Belfast, UK). He’ll teach a two-part course titled Hydrogen Effects in Materials, while his Sandia colleague Jeff LaChance will lead a quantitative risk assessment course.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | newswise
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>