Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Aim to Mitigate Impact of Unintended Hydrogen Leaks by Examining ‘Embrittlement’ Issues

28.05.2008
Materials researchers across the globe have fervently been working to find the ideal hydrogen storage material, one that will safely and efficiently provide the needed range and running time for fuel cell vehicles. But a separate issue — hydrogen “embrittlement” — is an equally challenging technical hurdle that has gone largely unnoticed by the general public.

Researchers at Sandia National Laboratories in Livermore, Calif., however, have quietly been tackling the problem for years. Sandia is a National Nuclear Security Administration laboratory.

Hydrogen embrittlement is not unique to on-board storage, but automotive applications are the focus of Sandia’s current research. In terms of on-board storage, Sandia materials scientist Brian Somerday says hydrogen embrittlement can be defined as the cracking or fracturing of the outside wall of a hydrogen storage tank. It occurs because of the unique structure and absorption qualities of hydrogen and can lead to unintended leaks.

“Because of its small size, hydrogen can readily diffuse (scatter or disperse) into materials at room temperature,” says Somerday. “Other gas species can promote embrittlement of structural materials, but the mobility of hydrogen at room temperature makes it unique as an embrittling agent.”

This means the hydrogen is easily absorbed by other materials, which is a useful scientific phenomenon when the goal is to store hydrogen in a metal hydride material for onboard storage. “But for the automobile’s fuel tank itself,” says Somerday, “the risk of embrittlement – and subsequent leaks – is a concern.”

Materials scientists have been working on hydrogen embrittlement since long before the term “hydrogen highway” joined the vernacular.

“This is not a new phenomenon, but one that has been studied for decades,” says Somerday, who was hired by Sandia 10 years ago to work on hydrogen embrittlement in relation to gas transfer systems. Currently, his efforts support the FreedoomCAR and Fuel Partnership and are focused on low-cost steels, aluminum alloys, and stainless steels. His primary interest is what happens structurally to those materials when exposed to hydrogen.

“By measuring the structural properties of the materials, quantifying the degree by which they will degrade when stressed in hydrogen, and simulating the cracks that occur in the structural material, we can minimize the impact of the embrittlement through proper design,” says Somerday. The ultimate goal, he says, is to eliminate the possibility of embrittlement altogether.

A scientific level of understanding, he says, will help provide guidance for storing hydrogen for automotive purposes — whether in an onboard fuel tank, a storage tank at a refueling station, or piping that hydrogen might flow through between the two. The researchers, says Somerday, are interested in anything that might come in contact with high-pressure hydrogen. The results of Sandia’s research will facilitate decisions such as what structural materials to use for hydrogen storage and the lifespan of such materials.

Sandia, Somerday says, is one of only a few research institutions currently studying the embrittlement issue. One of its lab capabilities allows researchers to subject material specimens to dynamic loads in very high hydrogen gas pressures (other systems generally only offer much lower pressure capacities).

Due to his expertise and knowledge of the subject, Somerday will serve as a faculty member at the Third European Summer School on Hydrogen Safety, to beheld later this summer at the University of Ulster (Belfast, UK). He’ll teach a two-part course titled Hydrogen Effects in Materials, while his Sandia colleague Jeff LaChance will lead a quantitative risk assessment course.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | newswise
Further information:
http://www.sandia.gov

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>