Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-repairing aircraft could revolutionise aviation safety

19.05.2008
A new technique that mimics healing processes found in nature could enable damaged aircraft to mend themselves automatically, even during a flight.

As well as the obvious safety benefits, this breakthrough could make it possible to design lighter aeroplanes in future (see below). This would lead to fuel savings, cutting costs for airlines and passengers and reducing carbon emissions too.

The technique works like this. If a tiny hole/crack appears in the aircraft (e.g. due to wear and tear, fatigue, a stone striking the plane etc), epoxy resin would ‘bleed’ from embedded vessels near the hole/crack and quickly seal it up, restoring structural integrity. By mixing dye into the resin, any ‘self-mends’ could be made to show as coloured patches that could easily be pinpointed during subsequent ground inspections, and a full repair carried out if necessary.

This simple but ingenious technique, similar to the bruising and bleeding/healing processes we see after we cut ourselves, has been developed by aerospace engineers at Bristol University, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It has potential to be applied wherever fibre-reinforced polymer (FRP) composites are used. These lightweight, high-performance materials are proving increasingly popular not only in aircraft but also in car, wind turbine and even spacecraft manufacture. The new self-repair system could therefore have an impact in all these fields.

The technique’s innovative aspect involves filling the hollow glass fibres contained in FRP composites with resin and hardener. If the fibres break, the resin and hardener ooze out, enabling the composite to recover up to 80-90% of its original strength – comfortably allowing a plane to function at its normal operational load.

“This approach can deal with small-scale damage that’s not obvious to the naked eye but which might lead to serious failures in structural integrity if it escapes attention,” says Dr Ian Bond, who has led the project. “It’s intended to complement rather than replace conventional inspection and maintenance routines, which can readily pick up larger-scale damage, caused by a bird strike, for example.”

By further improving the already excellent safety characteristics of FRP composites, the self-healing system could encourage even more rapid uptake of these materials in the aerospace sector. A key benefit would be that aircraft designs including more FRP composites would be significantly lighter than the primarily aluminium-based models currently in service. Even a small reduction in weight equates to substantial fuel savings over an aircraft’s lifetime.

“This project represents just the first step”, says Ian Bond. “We’re also developing systems where the healing agent isn’t contained in individual glass fibres but actually moves around as part of a fully integrated vascular network, just like the circulatory systems found in animals and plants. Such a system could have its healing agent refilled or replaced and could repeatedly heal a structure throughout its lifetime. Furthermore, it offers potential for developing other biological-type functions in man-made structures, such as controlling temperature or distributing energy sources.”

The new self-repair technique developed by the current EPSRC-funded project could be available for commercial use within around four years.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>