Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bridge Cable Fails, DuPont™ Hytrel® to the Rescue

When large rubber-insulated cables for a lift bridge connecting Minnesota and Wisconsin failed after less than two years in service, Northwire Inc. had a ready solution: replacement cable insulated with DuPont™ Hytrel® thermoplastic elastomer.

Because Hytrel® provides effective electrical insulation and toughness in thin layers, the replacement cables using Hytrel® are more than 40 percent smaller in diameter than the one that failed. “Smaller cable diameter means longer flex life at a given bend radius,” said Ted Beach, director of sales for Northwire. Hytrel® is ideal for cables that flex because its combination of high dielectric strength and toughness allows its use in thinner layers than many alternative materials.

Photo: DuPont
Slimmer profile of cable insulated with DuPont™ Hytrel® (left) indicates longer flex life than rubber-insulated cable (right) that failed after less than two years of service on lift bridge.

The old cable, which used ethylene-propylene rubber for insulation of its 50 conductors (16 AWG), measured 1.86 inches (47 millimeters) in diameter. The diameter of the replacement cable using Hytrel® is about 40 percent smaller, just 1.1 inches (28 millimeters). Its conductors are each insulated with 0.010 inch (0.25 millimeter) of Hytrel®. Another advantage for Hytrel® is productivity and stability during extrusion of such thin insulation layers.

Northwire is also bringing the benefits of Hytrel® for insulation to manufacturers and end-users of robots, other industrial automation equipment and retractable coiled cable for various applications. The company recently obtained the first 90ºC and 105ºC UL recognitions for Hytrel® under the UL 758 standard. These are embodied in UL style 10912 AWM.

Based in Osceola, Wis., Northwire specializes in custom-designed cables for industrial, medical and a variety of specialized markets. For more information, call 1-800-468-1516 or visit

For more information about DuPont™ Hytrel®, please visit on the web.

The DuPont Engineering Polymers business manufactures and sells Crastin® PBT and Rynite® PET thermoplastic polyester resins, Delrin® acetal resins, Hytrel® thermoplastic polyester elastomers, DuPont™ ETPV engineering thermoplastic vulcanizates, Minlon® mineral reinforced nylon resins, Thermx® PCT polycyclohexylene dimethyl terephthalate, Tynex® filaments, Vespel® parts and shapes, Zenite® LCP liquid crystal polymers, Zytel® nylon resins and Zytel® HTN high-performance polyamides. These products serve global markets in the aerospace, appliance, automotive, consumer, electrical, electronic, healthcare, industrial, sporting goods and many other diversified industries.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval Logo, DuPont™, The miracles of science™ and Hytrel® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>