Nano-designed transistors with disordered materials, but high performance

At present, high performance transistors are only available in crystalline materials which are expensive and have to be attached ex-situ onto larger area substrates, which adds to the expense and complexity of system design. If both the electronics and display substrates can be integrated onto one platform, it would usher a new dawn in immersive and personal electronics.

Individuals will thus be able to communicate, send and receive information of value, and access data about their current environment and health status with freedom, at leisure, and in comfort. However, in general, the deposition of semiconductor films used to make transistors on such substrates has to be carried out at low temperatures to preserve substrate integrity. As a result, the quality of the organic or inorganic semiconductor films is severely constrained, and has a dramatic influence on the transistor performance.

In a recent report to be published in Science – 'Engineering Perspectives', backed by a further paper to appear in IEEE Electron Device Letters, engineers propose the use of clever transistor structure designs to overcome some of the issues with obtaining suitably low power and high speed operations in standard material systems.

In the first collaborative work with Hitachi Central Research Laboratory, Japan, researchers at the Advanced Technology Institute of the University of Surrey have experimentally and theoretically demonstrated that for transistors of disordered silicon films, superior switching performance (low leakage current, and steep sub-threshold slope) can be achieved by making the conduction channel in the transistor very thin.

A higher ION/IOFF ratio, which exceeds 1011, can be achieved for devices with a 2.0-nm-thick channel. Another seminal work from the same research laboratory at Surrey, is on the newly developed source-gated transistor (SGT) concept by Professor John Shannon. Compared to a field-effect transistor, the SGTs can operate with very short source-drain separations even with a thick gate insulator layer to achieve high speed, good stability and superior control of current uniformity, providing a significant advantage in terms of the fabrication process.

Dr Xiaojun Guo, one of the lead investigators, comments: “Engineering of the transistor structure itself rather than the channel material can lead to improved device performance. It will enable the design of high-performance large area circuits and systems based on low-cost reliable material processes”.

Professor Ravi Silva, Director of the Advanced Technology Institute states: “This work will help extend the already well established CMOS fabrication technologies for use in large area applications such as displays and sensors, which are at the heart of consumer electronics. The ATI is fortunate that we have been at the forefront of two potential technologies that can lead to enhanced device performance in disordered materials by clever nano-scale structural design of disordered transistors. This type of work sponsored by the EPSRC forms the bedrock for future electronic technologies”.

This research will be published in the journal 'Science', and a more detailed version of the nano-designed transistor will appear in 'IEEE Electron Device Letters'.

Media Contact

Stuart Miller alfa

More Information:

http://www.surrey.ac.uk

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors