Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functional Materials programme promotes cross-industry research and development

17.04.2008
New materials are gaining ground as the next significant innovation area for Finnish companies. With the aid of several pioneering projects, Finnish companies are reinforcing their technology and product development initiatives across traditional industry boundaries.

The Tekes Functional Materials programme aims to develop functional materials for different industries in Finland. The aim is to provide Finnish industry with access to the best possible expertise in materials production and use, through domestic and international networking. The nearly seven-year programme started last year, and its total funding volume is over 200 million euros.

“The research programme has only just begun, but already we are seeing a number of very interesting research and corporate projects. An example is Kiilto Oy, which manufactures an adhesive that functions as fireproofing material. Finland has a significant number of companies and organisations conducting research in new materials. The Functional Materials programme brings together the developers and end users of these materials,” said Dr. Solveig Roschier, Programme Manager, Tekes.

“A new feature of this programme is the multidisciplinary thematic groups that bring together companies that struggle with similar issues in different industries. Top experts from companies and research organisations discuss mutual focus areas for research priorities in order to solve these key challenges. As each participant can utilise the results in their own activities, the overall efficiency and impact of materials research is increased markedly,” said Ms. Anneli Ojapalo, Programme Coordinator, Spinverse Ltd.

The properties of functional materials are designed to serve a specific purpose in such a way that the functionalities are controllable and repeatable. For example, building and packaging materials can be made to react to changes in humidity or temperature.

The potential applications of functional materials encompass numerous fields. For instance, Helsinki-based AdaptaMat produces metallic Magnetic Memory Shape materials (MSM), which produce a change of dimension, shape or stress due to an applied magnetic field. MSM elements facilitate the development of totally new applications, for example faster valves for process industries. The movement cycle generated by changes in the material dimensions enables higher speeds than conventional mechanical constructions.

“Various industries benefit from the programme by promoting innovative business based on completely new materials solutions. On the other hand, traditional fields such as the forest, energy, machine and metal industries can also renew their production with expertise in new materials and manufacturing innovations,” added Dr. Roschier.

Eeva Landowski | alfa
Further information:
http://www.nmpfinland.net
http://www.tekes.fi

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>