Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Philips adopts DuPont™ Zytel® CDV for manufacture of lighting components

16.04.2008
Cost-effective and sustainable production of coated parts facilitated by conductive nylon grade

The switch to a conductive grade of DuPont™ Zytel® nylon for the manufacture of lighting fixtures has helped Philips Lighting B.V. of Winterswijk (the Netherlands) achieve its aesthetic, production and sustainability requirements and has resulted in the approval of Zytel® CDV for future Philips lighting applications.


Photo: DuPont
Thanks to DuPont™ Zytel® CDV, the injection-moulded end caps for the X-tendolight range of luminaires from Philips can be painted using the same powder coating process used for the light’s steel housing, facilitating a closer colour match between components and greatly simplifying the manufacturing process.

Due to the nylon’s inherent conductivity, the injection-moulded end caps for the X-tendolight range of luminaires from Philips lend themselves to the same powder coating process as used for the light’s steel housing. This facilitates a closer colour match between components, eliminates the need for wet painting that contains hazardous solvents and greatly simplifies the manufacturing process.

The X-tendolight range of luminaries from Philips is mainly used in offices. The lights are up to two metres long and feature a steel plate body that can be powder coated in a range of colours and finishes depending on customer requirements. End caps previously fitted to the housing had been moulded in a standard white polycarbonate-ABS blend, and then wet-painted for a best-matching finish in cases where the customer requested a colour other than standard white. The use of solvent-based paints necessitated the conversion of the production line to meet European emission regulations, particularly with regard to air filtration and product handling.

Seeking a more cost-effective and sustainable alternative, Philips trialled Zytel® CDV, a conductive nylon resin from DuPont, on the recommendation of Roger Moons, DuPont Engineering Polymer’s development manager for the Benelux region. “Zytel® CDV offers an economical way to produce powder-coated parts due to its inherent conductivity. As a result, Philips could use the same powder coating process that it uses to paint the steel housing, involving temperatures of 185°C during the curing process, without compromising the performance of the Zytel® part. Moreover, the Zytel® CDV resin can be injection moulded using the same tools as those used for the PC-ABS, so there is no need for additional investment in processing equipment,” explains Moons. Due to their dimensional stability and low warpage behaviour, Zytel® CDV resins are well suited for use in the production of lighting end caps. Two snap fits, incorporated in the moulding’s design, create a reliably tight fitting to the luminaire’s housing.

The gains attributed to the change in polymer for production of the end-caps are confirmed by Erik Kremer, QHSE (Quality, Health, Safety & Environmental) manager at Philips Lighting. “They are threefold: Firstly we achieve a vastly superior colour match to the light housing, due to the fact that both parts are treated in the same process. The same applies to their surface finish. Secondly, our manufacturing process is simplified, more flexible and far more cost-effective. We now only require a single coating line for both parts, parts can be coated as and when required. Thirdly, by eliminating the use of solvents, we go further to meeting our company’s own sustainability objectives and prevent additional expenditure on redundant air-filtering and handling systems.

Martijn van der Pol, purchasing manager at Philips Lighting is just as enthusiastic: “This specific Zytel® CDV grade has the same shrinkage properties as PC-ABS, which we thought would be impossible. By adding this conductive grade to the manufacturing process for our existing luminaire range, we gained the flexibility to use both materials in the same tool. Thus we can continue to produce off-the-shelf white luminaires with pre-coloured PC-ABS, and choose to make any other colour with Zytel® CDV with no extra tool investment and minimal variable cost.”

Following the adoption of Zytel® CDV for the end-caps of the X-tendolight range during 2007, and its associated benefits, the material has received qualification from Philips for the manufacture of future lighting fixtures.

Royal Philips Electronics of the Netherlands is a global leader in healthcare, lighting and consumer lifestyle, delivering people-centric, innovative products, services and solutions through the brand promise of “sense and simplicity”. Headquartered in the Netherlands, Philips employs approximately 123,800 employees in more than 60 countries worldwide. With sales of EUR 27 billion in 2007, the company is a market leader in medical diagnostic imaging and patient monitoring systems, energy efficient lighting solutions, as well as lifestyle solutions for personal wellbeing. News from Philips is located at www.philips.com/newscenter.

The DuPont Engineering Polymers business manufactures and sells Crastin® PBT and Rynite® PET thermoplastic polyester resins, Delrin® acetal resins, Hytrel® thermoplastic polyester elastomers, DuPont™ ETPV engineering thermoplastic vulcanizates, Minlon® mineral-reinforced nylon resins, Thermx® PCT polycyclohexylene dimethylterephthalate, Tynex® nylon filaments, Vespel® parts and shapes, Zenite® liquid crystal polymers, Zytel® nylon resins and Zytel® HTN high-performance nylons. These products serve global markets in the aerospace, appliance, automotive, consumer, electrical, electronic, health-care, industrial, sporting goods and many other diversified industries.

DuPont is a science company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture, nutrition, electronics, communications, safety and protection, home and construction, transportation and apparel

The DuPont Oval Logo, DuPont™, The miracles of science™ and Zytel® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Note for the editor
This press release is based on information from
Philips Lighting
Martijn van der Pol
Rondweg-Zuid 85
7102 JD Winterswijk
The Netherlands
Direct phone: +31 (0)543 542 345
E mail: martijn.van.der.pol@philips.com

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>