Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Philips adopts DuPont™ Zytel® CDV for manufacture of lighting components

16.04.2008
Cost-effective and sustainable production of coated parts facilitated by conductive nylon grade

The switch to a conductive grade of DuPont™ Zytel® nylon for the manufacture of lighting fixtures has helped Philips Lighting B.V. of Winterswijk (the Netherlands) achieve its aesthetic, production and sustainability requirements and has resulted in the approval of Zytel® CDV for future Philips lighting applications.


Photo: DuPont
Thanks to DuPont™ Zytel® CDV, the injection-moulded end caps for the X-tendolight range of luminaires from Philips can be painted using the same powder coating process used for the light’s steel housing, facilitating a closer colour match between components and greatly simplifying the manufacturing process.

Due to the nylon’s inherent conductivity, the injection-moulded end caps for the X-tendolight range of luminaires from Philips lend themselves to the same powder coating process as used for the light’s steel housing. This facilitates a closer colour match between components, eliminates the need for wet painting that contains hazardous solvents and greatly simplifies the manufacturing process.

The X-tendolight range of luminaries from Philips is mainly used in offices. The lights are up to two metres long and feature a steel plate body that can be powder coated in a range of colours and finishes depending on customer requirements. End caps previously fitted to the housing had been moulded in a standard white polycarbonate-ABS blend, and then wet-painted for a best-matching finish in cases where the customer requested a colour other than standard white. The use of solvent-based paints necessitated the conversion of the production line to meet European emission regulations, particularly with regard to air filtration and product handling.

Seeking a more cost-effective and sustainable alternative, Philips trialled Zytel® CDV, a conductive nylon resin from DuPont, on the recommendation of Roger Moons, DuPont Engineering Polymer’s development manager for the Benelux region. “Zytel® CDV offers an economical way to produce powder-coated parts due to its inherent conductivity. As a result, Philips could use the same powder coating process that it uses to paint the steel housing, involving temperatures of 185°C during the curing process, without compromising the performance of the Zytel® part. Moreover, the Zytel® CDV resin can be injection moulded using the same tools as those used for the PC-ABS, so there is no need for additional investment in processing equipment,” explains Moons. Due to their dimensional stability and low warpage behaviour, Zytel® CDV resins are well suited for use in the production of lighting end caps. Two snap fits, incorporated in the moulding’s design, create a reliably tight fitting to the luminaire’s housing.

The gains attributed to the change in polymer for production of the end-caps are confirmed by Erik Kremer, QHSE (Quality, Health, Safety & Environmental) manager at Philips Lighting. “They are threefold: Firstly we achieve a vastly superior colour match to the light housing, due to the fact that both parts are treated in the same process. The same applies to their surface finish. Secondly, our manufacturing process is simplified, more flexible and far more cost-effective. We now only require a single coating line for both parts, parts can be coated as and when required. Thirdly, by eliminating the use of solvents, we go further to meeting our company’s own sustainability objectives and prevent additional expenditure on redundant air-filtering and handling systems.

Martijn van der Pol, purchasing manager at Philips Lighting is just as enthusiastic: “This specific Zytel® CDV grade has the same shrinkage properties as PC-ABS, which we thought would be impossible. By adding this conductive grade to the manufacturing process for our existing luminaire range, we gained the flexibility to use both materials in the same tool. Thus we can continue to produce off-the-shelf white luminaires with pre-coloured PC-ABS, and choose to make any other colour with Zytel® CDV with no extra tool investment and minimal variable cost.”

Following the adoption of Zytel® CDV for the end-caps of the X-tendolight range during 2007, and its associated benefits, the material has received qualification from Philips for the manufacture of future lighting fixtures.

Royal Philips Electronics of the Netherlands is a global leader in healthcare, lighting and consumer lifestyle, delivering people-centric, innovative products, services and solutions through the brand promise of “sense and simplicity”. Headquartered in the Netherlands, Philips employs approximately 123,800 employees in more than 60 countries worldwide. With sales of EUR 27 billion in 2007, the company is a market leader in medical diagnostic imaging and patient monitoring systems, energy efficient lighting solutions, as well as lifestyle solutions for personal wellbeing. News from Philips is located at www.philips.com/newscenter.

The DuPont Engineering Polymers business manufactures and sells Crastin® PBT and Rynite® PET thermoplastic polyester resins, Delrin® acetal resins, Hytrel® thermoplastic polyester elastomers, DuPont™ ETPV engineering thermoplastic vulcanizates, Minlon® mineral-reinforced nylon resins, Thermx® PCT polycyclohexylene dimethylterephthalate, Tynex® nylon filaments, Vespel® parts and shapes, Zenite® liquid crystal polymers, Zytel® nylon resins and Zytel® HTN high-performance nylons. These products serve global markets in the aerospace, appliance, automotive, consumer, electrical, electronic, health-care, industrial, sporting goods and many other diversified industries.

DuPont is a science company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture, nutrition, electronics, communications, safety and protection, home and construction, transportation and apparel

The DuPont Oval Logo, DuPont™, The miracles of science™ and Zytel® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Note for the editor
This press release is based on information from
Philips Lighting
Martijn van der Pol
Rondweg-Zuid 85
7102 JD Winterswijk
The Netherlands
Direct phone: +31 (0)543 542 345
E mail: martijn.van.der.pol@philips.com

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>