Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Colloidal inks form self-supporting scaffolds through robocasting


A new way to assemble complex, three-dimensional structures from specially formulated colloidal inks could find use in advanced ceramics, sensors, composites, catalyst supports, tissue engineering scaffolds and photonic materials.

As will be reported in the July 9 issue of the journal Langmuir, scientists have developed colloidal, gel-based inks that form self-supporting features through a robotic deposition process called robocasting. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the desired structure layer by layer.

"Our goal is to make designer materials that can’t be made by conventional forming techniques," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at the University of Illinois at Urbana-Champaign.

The work is a collaboration between Lewis, Illinois graduate student James Smay, and Joseph Cesarano, a staff scientist at the U.S. Department of Energy’s Sandia National Laboratories in Albuquerque, N.M. Cesarano pioneered the concept of robocasting several years ago and implemented it as an alternative "rapid prototyping" method for producing ceramic components. The Illinois-Sandia group is advancing the technique to finer scales and designing special inks that can form self-supporting features.

"The directed assembly of fine-scale, three-dimensional structures containing spanning elements required the development of concentrated colloidal, gel-based inks," Lewis said. "These inks must first flow through a very fine deposition nozzle and then quickly ’set’ to maintain their shape while simultaneously bonding to the underlying layer."

The researchers have created structures with features as small as 100 microns (about the diameter of a human hair) and have spanned gaps as large as 2 millimeters.

The elastic properties and the viscous response of the ink can be "tuned" by tailoring the strength of the interparticle attractions, Lewis said. Because of the dynamic nature of the resulting gel, the particle network forms very quickly after the ink is pushed through the syringe, providing the desired shape retention.

Through careful control of colloidal forces, the researchers not only can produce complex shapes that can’t be made by conventional molding or extrusion processes, they also can build in complexity with respect to chemical composition.

"The robotic deposition equipment has the capability of handling multiple inks and dispensing them simultaneously," Lewis said. "As the relative rates of deposited ink are regulated, structures can be built that have compositional variations in them."

Inks are housed in separate syringes mounted on the robotic deposition apparatus and can be mixed or deposited independently. The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern. After a layer is generated, the stage is raised and another layer is deposited. This process is repeated until the desired structure is produced. The machine’s motion is controlled by a computer program called RoboCAD, developed by Smay. The software allows users to rapidly design and build complex, three-dimensional structures by simply designing layers as two-dimensional drawings.

"Ink can be made from nearly any particulate material that can be suspended in solution, as long as the interparticle forces can be tuned to yield the desired viscoelastic response," Lewis said. "We have made inks out of silica, alumina, lead zirconate titanate, and hydroxyapatite (the basic inorganic constituent of bone) colloidal particles. We also can deposit polymeric, metallic, and semiconducting colloidal inks."

The National Science Foundation and the Department of Energy funded this work

James E. Kloeppel | EurekAlert!

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>