Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colloidal inks form self-supporting scaffolds through robocasting

20.06.2002


A new way to assemble complex, three-dimensional structures from specially formulated colloidal inks could find use in advanced ceramics, sensors, composites, catalyst supports, tissue engineering scaffolds and photonic materials.



As will be reported in the July 9 issue of the journal Langmuir, scientists have developed colloidal, gel-based inks that form self-supporting features through a robotic deposition process called robocasting. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the desired structure layer by layer.

"Our goal is to make designer materials that can’t be made by conventional forming techniques," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at the University of Illinois at Urbana-Champaign.


The work is a collaboration between Lewis, Illinois graduate student James Smay, and Joseph Cesarano, a staff scientist at the U.S. Department of Energy’s Sandia National Laboratories in Albuquerque, N.M. Cesarano pioneered the concept of robocasting several years ago and implemented it as an alternative "rapid prototyping" method for producing ceramic components. The Illinois-Sandia group is advancing the technique to finer scales and designing special inks that can form self-supporting features.

"The directed assembly of fine-scale, three-dimensional structures containing spanning elements required the development of concentrated colloidal, gel-based inks," Lewis said. "These inks must first flow through a very fine deposition nozzle and then quickly ’set’ to maintain their shape while simultaneously bonding to the underlying layer."

The researchers have created structures with features as small as 100 microns (about the diameter of a human hair) and have spanned gaps as large as 2 millimeters.

The elastic properties and the viscous response of the ink can be "tuned" by tailoring the strength of the interparticle attractions, Lewis said. Because of the dynamic nature of the resulting gel, the particle network forms very quickly after the ink is pushed through the syringe, providing the desired shape retention.

Through careful control of colloidal forces, the researchers not only can produce complex shapes that can’t be made by conventional molding or extrusion processes, they also can build in complexity with respect to chemical composition.

"The robotic deposition equipment has the capability of handling multiple inks and dispensing them simultaneously," Lewis said. "As the relative rates of deposited ink are regulated, structures can be built that have compositional variations in them."

Inks are housed in separate syringes mounted on the robotic deposition apparatus and can be mixed or deposited independently. The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern. After a layer is generated, the stage is raised and another layer is deposited. This process is repeated until the desired structure is produced. The machine’s motion is controlled by a computer program called RoboCAD, developed by Smay. The software allows users to rapidly design and build complex, three-dimensional structures by simply designing layers as two-dimensional drawings.

"Ink can be made from nearly any particulate material that can be suspended in solution, as long as the interparticle forces can be tuned to yield the desired viscoelastic response," Lewis said. "We have made inks out of silica, alumina, lead zirconate titanate, and hydroxyapatite (the basic inorganic constituent of bone) colloidal particles. We also can deposit polymeric, metallic, and semiconducting colloidal inks."


The National Science Foundation and the Department of Energy funded this work

James E. Kloeppel | EurekAlert!

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>