Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colloidal inks form self-supporting scaffolds through robocasting

20.06.2002


A new way to assemble complex, three-dimensional structures from specially formulated colloidal inks could find use in advanced ceramics, sensors, composites, catalyst supports, tissue engineering scaffolds and photonic materials.



As will be reported in the July 9 issue of the journal Langmuir, scientists have developed colloidal, gel-based inks that form self-supporting features through a robotic deposition process called robocasting. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the desired structure layer by layer.

"Our goal is to make designer materials that can’t be made by conventional forming techniques," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at the University of Illinois at Urbana-Champaign.


The work is a collaboration between Lewis, Illinois graduate student James Smay, and Joseph Cesarano, a staff scientist at the U.S. Department of Energy’s Sandia National Laboratories in Albuquerque, N.M. Cesarano pioneered the concept of robocasting several years ago and implemented it as an alternative "rapid prototyping" method for producing ceramic components. The Illinois-Sandia group is advancing the technique to finer scales and designing special inks that can form self-supporting features.

"The directed assembly of fine-scale, three-dimensional structures containing spanning elements required the development of concentrated colloidal, gel-based inks," Lewis said. "These inks must first flow through a very fine deposition nozzle and then quickly ’set’ to maintain their shape while simultaneously bonding to the underlying layer."

The researchers have created structures with features as small as 100 microns (about the diameter of a human hair) and have spanned gaps as large as 2 millimeters.

The elastic properties and the viscous response of the ink can be "tuned" by tailoring the strength of the interparticle attractions, Lewis said. Because of the dynamic nature of the resulting gel, the particle network forms very quickly after the ink is pushed through the syringe, providing the desired shape retention.

Through careful control of colloidal forces, the researchers not only can produce complex shapes that can’t be made by conventional molding or extrusion processes, they also can build in complexity with respect to chemical composition.

"The robotic deposition equipment has the capability of handling multiple inks and dispensing them simultaneously," Lewis said. "As the relative rates of deposited ink are regulated, structures can be built that have compositional variations in them."

Inks are housed in separate syringes mounted on the robotic deposition apparatus and can be mixed or deposited independently. The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern. After a layer is generated, the stage is raised and another layer is deposited. This process is repeated until the desired structure is produced. The machine’s motion is controlled by a computer program called RoboCAD, developed by Smay. The software allows users to rapidly design and build complex, three-dimensional structures by simply designing layers as two-dimensional drawings.

"Ink can be made from nearly any particulate material that can be suspended in solution, as long as the interparticle forces can be tuned to yield the desired viscoelastic response," Lewis said. "We have made inks out of silica, alumina, lead zirconate titanate, and hydroxyapatite (the basic inorganic constituent of bone) colloidal particles. We also can deposit polymeric, metallic, and semiconducting colloidal inks."


The National Science Foundation and the Department of Energy funded this work

James E. Kloeppel | EurekAlert!

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>