Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasicrystal mystery unraveled with computer simulation

10.03.2008
The method to the madness of quasicrystals has been a mystery to scientists. Quasicrystals are solids whose atoms aren't arranged in a repeating pattern, as they are in ordinary crystals. Yet they form intricate patterns that are technologically useful.

A computer simulation performed by University of Michigan scientists has given new insights into how this unique class of solids forms. Quasicrystals incorporate clusters of atoms as they are, without rearranging them as regular crystals do, said Sharon Glotzer, a professor in the Department of Chemical Engineering.

Crystals form when liquids freeze into solids. When a normal crystal grows, a crystallite nucleus develops first. The atoms in the liquid attach one-by-one to the crystallite, as though following a template. If the atoms have already formed a cluster on their own, they must rearrange in order to fit the template. This is how a repeating pattern forms.

In the case of quasicrystals, though, atoms that have already formed stable shapes away from the crystallite can still bind to it. They don't have to make adjustments.

"In our simulations of quasicrystals, we observed that the atoms attach to the crystallite in large groups," said chemical engineering doctoral student Aaron Keys. "These groups have already formed locally stable arrangements, and the growing quasicrystal assimilates them with minimal rearrangement."

Because quasicrystals aren't as regimented as regular crystals, the solid can reach a "structural compromise," where liquid-like molecular arrangements are retained in the solid state. This allows quasicrystals to form more easily than regular crystals.

Quasicrystals are found in certain metal alloys that tend to resist wear and corrosion, and are used in non-stick coatings, for example. They also have high tensile strength, meaning high forces are required to stretch them to their breaking point.

"Learning how they grow will help us figure out to how engineer quasicrystalline structures from new building blocks, which could lead to a slew of new materials," Glotzer said.

Glotzer and Keys are authors of a paper on the research, "How do quasicrystals grow"," published in Physical Review Letters. Their paper is featured in an article in the current edition of the journal Nature.

Glotzer is also a professor in the departments of Materials Science and Engineering, Macromolecular Science and Engineering, and Physics.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://www.engin.umich.edu/dept/cheme/people/glotzer.html

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>