Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material can find a needle in a nuclear waste haystack

04.03.2008
Nuclear power has advantages, but, if this method of making power is to be viable long term, discovering new solutions to radioactive waste disposal and other problems are critical. Otherwise nuclear power is unlikely to become mainstream.

A team of Northwestern University chemists is the first to focus on metal sulfide materials as a possible source for nuclear waste remediation methods. Their new material is extremely successful in removing strontium from a sodium-heavy solution, which has concentrations similar to those in real liquid nuclear waste. Strontium-90, a major waste component, is one of the more dangerous radioactive fission materials created within a nuclear reactor.

The results will be published online the week of March 3 in the Proceedings of the National Academy of Sciences (PNAS). By taking advantage of ion exchange, the new method captures and concentrates strontium as a solid material, leaving clean liquid behind. In the case of actual nuclear waste remediation, the radioactive solid could then be dealt with separately -- handled, moved, stored or recycled -- and the liquid disposed.

“It is a very difficult job to capture strontium in vast amounts of liquid nuclear waste,” said Mercouri G. Kanatzidis, Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences and the paper’s senior author. “Sodium and calcium ions, which are nonradioactive, are present in such enormous amounts compared to strontium that they can be captured instead of the radioactive material, interfering with remediation.”

Strontium is like a needle in a haystack: sodium ions outnumber strontium ions by more than a million to one. The material developed at Northwestern -- a layered metal sulfide made of potassium, manganese, tin and sulfur called KMS-1 -- attracts strontium but not sodium.

“The metal sulfide did much, much better than we expected at removing strontium in such an excess of sodium,” said Kanatzidis. “We were really amazed at how well it discriminates against sodium and think we have something special. As far as we can tell, this is the best material out there for this kind of application.”

KMS-1 works at the extremes of the pH scale -- in very basic and very acidic solutions, the conditions common in nuclear waste -- and everywhere in between. Metal oxides and polymer resins, the materials currently used in nuclear waste remediation, perform reasonably well but are more limited than KMS-1: each typically works in either basic or acidic conditions but not both and definitely not across the pH scale.

In earlier work, Kanatzidis and his team had found KMS-1 to be very quick and facile at ion exchange. (The material gives up an ion and takes another to maintain charge balance.) Knowing this and also that the ion exchange process is a removal process, the researchers decided that strontium was an interesting ion with which to test their new material.

The solution the researchers used in the lab contained strontium and two “interfering” ions, sodium and calcium, in concentrations like those found in the nuclear waste industry. (Nonradioactive strontium, which works the same as the radioactive version, was used in the experiments.) KMS-1, a free flowing black-brown powder, was packaged like tea in a teabag and then dropped into the solution. The all-important ion exchange followed: the metal sulfide “teabag” soaked up the strontium and gave off potassium, which is not radioactive, into the liquid.

KMS-1 does its remarkable work targeting only strontium by taking advantage of two things: strontium is a heavier ion than calcium, and sulfur (a component of KMS-1) attracts heavier ions; and KMS-1 attracts ions with more charge so it attracts strontium, which has a charge of 2+, and doesn’t attract sodium, which only has a charge of 1+. So, as Kanatzidis likes to say, “Our material beats both sodium and calcium.”

“The nuclear power process generates enormous amounts of radioactive liquid waste, which is stored in large tanks,” said Kanatzidis. “If we can concentrate the radioactive material, it can be dealt with and the nonradioactive water thrown away. I can imagine our material as part of a cleansing filter that the solution is passed through.”

Looking to the future, to be a scaleable and affordable remediation method, the metal in the metal sulfide needs to be inexpensive and readily available and also make a stable compound.

“We focused on potassium, manganese and tin because we have been working with them for some time,” said Manolis J. Manos, a postdoctoral fellow at Northwestern and lead author of the paper. “All three metals make stable compounds and are common and abundant.”

“Our next step is to do systematic studies, including using an actual waste solution from the nuclear power industry, to learn how KMS-1 works and how to make even better metal sulfides,” added Manos.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>