Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New material can find a needle in a nuclear waste haystack

Nuclear power has advantages, but, if this method of making power is to be viable long term, discovering new solutions to radioactive waste disposal and other problems are critical. Otherwise nuclear power is unlikely to become mainstream.

A team of Northwestern University chemists is the first to focus on metal sulfide materials as a possible source for nuclear waste remediation methods. Their new material is extremely successful in removing strontium from a sodium-heavy solution, which has concentrations similar to those in real liquid nuclear waste. Strontium-90, a major waste component, is one of the more dangerous radioactive fission materials created within a nuclear reactor.

The results will be published online the week of March 3 in the Proceedings of the National Academy of Sciences (PNAS). By taking advantage of ion exchange, the new method captures and concentrates strontium as a solid material, leaving clean liquid behind. In the case of actual nuclear waste remediation, the radioactive solid could then be dealt with separately -- handled, moved, stored or recycled -- and the liquid disposed.

“It is a very difficult job to capture strontium in vast amounts of liquid nuclear waste,” said Mercouri G. Kanatzidis, Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences and the paper’s senior author. “Sodium and calcium ions, which are nonradioactive, are present in such enormous amounts compared to strontium that they can be captured instead of the radioactive material, interfering with remediation.”

Strontium is like a needle in a haystack: sodium ions outnumber strontium ions by more than a million to one. The material developed at Northwestern -- a layered metal sulfide made of potassium, manganese, tin and sulfur called KMS-1 -- attracts strontium but not sodium.

“The metal sulfide did much, much better than we expected at removing strontium in such an excess of sodium,” said Kanatzidis. “We were really amazed at how well it discriminates against sodium and think we have something special. As far as we can tell, this is the best material out there for this kind of application.”

KMS-1 works at the extremes of the pH scale -- in very basic and very acidic solutions, the conditions common in nuclear waste -- and everywhere in between. Metal oxides and polymer resins, the materials currently used in nuclear waste remediation, perform reasonably well but are more limited than KMS-1: each typically works in either basic or acidic conditions but not both and definitely not across the pH scale.

In earlier work, Kanatzidis and his team had found KMS-1 to be very quick and facile at ion exchange. (The material gives up an ion and takes another to maintain charge balance.) Knowing this and also that the ion exchange process is a removal process, the researchers decided that strontium was an interesting ion with which to test their new material.

The solution the researchers used in the lab contained strontium and two “interfering” ions, sodium and calcium, in concentrations like those found in the nuclear waste industry. (Nonradioactive strontium, which works the same as the radioactive version, was used in the experiments.) KMS-1, a free flowing black-brown powder, was packaged like tea in a teabag and then dropped into the solution. The all-important ion exchange followed: the metal sulfide “teabag” soaked up the strontium and gave off potassium, which is not radioactive, into the liquid.

KMS-1 does its remarkable work targeting only strontium by taking advantage of two things: strontium is a heavier ion than calcium, and sulfur (a component of KMS-1) attracts heavier ions; and KMS-1 attracts ions with more charge so it attracts strontium, which has a charge of 2+, and doesn’t attract sodium, which only has a charge of 1+. So, as Kanatzidis likes to say, “Our material beats both sodium and calcium.”

“The nuclear power process generates enormous amounts of radioactive liquid waste, which is stored in large tanks,” said Kanatzidis. “If we can concentrate the radioactive material, it can be dealt with and the nonradioactive water thrown away. I can imagine our material as part of a cleansing filter that the solution is passed through.”

Looking to the future, to be a scaleable and affordable remediation method, the metal in the metal sulfide needs to be inexpensive and readily available and also make a stable compound.

“We focused on potassium, manganese and tin because we have been working with them for some time,” said Manolis J. Manos, a postdoctoral fellow at Northwestern and lead author of the paper. “All three metals make stable compounds and are common and abundant.”

“Our next step is to do systematic studies, including using an actual waste solution from the nuclear power industry, to learn how KMS-1 works and how to make even better metal sulfides,” added Manos.

Megan Fellman | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>