Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape-memory polymers designed for biomedical applications

07.01.2008
Researchers design shape-memory polymers for biomedical applications

Researchers at the Georgia Institute of Technology are developing unique polymers, which change shape upon heating, to open blocked arteries, probe neurons in the brain and engineer a tougher spine.

These so-called shape-memory polymers can be temporarily stretched or compressed into forms several times larger or smaller than their final shape. Then heat, light or the local chemical environment triggers a transformation into their permanent shape.

“My focus has been to optimize these polymers for many different biomedical applications. My lab studies how altering the chemistry and structure of the polymers affects their chemical, biological and mechanical properties,” said Ken Gall, a professor in the George W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering.

The mechanical properties of these polymers make them extremely attractive for many biomedical applications, according to Gall, who described his research in this area during two presentations at the Materials Research Society’s fall meeting in November.

Engineers are always searching for materials that display unconventional properties able to satisfy the severe requirements for implantation in the body. Particular attention must be paid to the biofunctionality, biostability and biocompatibility of these materials, which come into contact with tissue and body fluids.

With funding from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (NIH), Gall proposed replacing metallic cardiovascular stents with plastic ones because polymers more closely resemble soft biological tissue. Plus, polymers can be designed to gradually dissolve in the body.

“Metal stents are frequently covered in plastic anyway, so we set out to remove the metal leaving just a polymer sheath,” explained Gall. “Also, polymers are more flexible and do not stress the artery walls like the metals.”

Gall’s research group has designed a shape-memory polymer stent that can be compressed and fed through a tiny hole in the body into a blocked artery, just like a conventional stent. Then, the warmth of the body triggers the polymer’s expansion into its permanent shape, resulting in natural deployment without auxiliary devices. This work was published in the journal Biomaterials earlier this year.

For another project, Gall and graduate student David Safranski have been investigating how altering a polymer’s chemistry changes its properties, such as stretchiness. This project was funded by MedShape Solutions, an Atlanta company that Gall co-founded to develop medical devices primarily for use in minimally invasive surgery.

“You can tailor the polymer to moderate its strength, stiffness, stretchiness and expansion rate,” noted Gall.

They found that by changing the chemistry of the polymer backbone to include special side groups, they could increase of the amount of strain the polymer could withstand before failing without sacrificing stiffness. This discovery enabled the creation of polymers that could stretch farther and also push harder during recovery.

Gall and graduate student Scott Kasprzak are exploring how these polymers might be used as a deployable neuronal probe, with funding from the National Institute of Neurological Disorders and Stroke of the NIH.

“We’re looking for smart materials that can be synthesized in the size range of 100 microns – similar to the size of a strand of hair – and then be inserted into brain tissue,” explained Gall. “This type of probe would need to slowly change shape inside the brain as to not disturb any surrounding tissue.”

Another project in Gall’s laboratory is examining the use of these polymers for the spine. Most spinal surgeries are currently not performed arthroscopically, so Gall sees benefits in using these shape-memory materials to enable minimally invasive spinal surgery.

With funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Gall and graduate student Kathryn Smith are developing shape-memory polymers for the spine that are tough – meaning they stretch far and support a lot of weight like native spinal disks.

“This would improve the deliverability and life of artificial disks currently used in the spine. Essentially, we’re just trying to engineer tougher synthetic polymers that can be easily delivered,” explained Gall, who is collaborating on this project with Barbara Boyan and Johnna Temenoff, both of the Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

In addition to exploring different biomedical applications for shape-memory polymers, Gall has also turned his attention to manufacturing them. Walter Voit, a graduate student in the Technological Innovation: Generating Economic Results (TI:GER) program, is investigating how to produce shape-memory polymers at a low cost. More specifically, Voit is examining different types of materials and processing methods that can be used to commercially produce quality polymers for lower cost medical applications.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>