Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape-memory polymers designed for biomedical applications

07.01.2008
Researchers design shape-memory polymers for biomedical applications

Researchers at the Georgia Institute of Technology are developing unique polymers, which change shape upon heating, to open blocked arteries, probe neurons in the brain and engineer a tougher spine.

These so-called shape-memory polymers can be temporarily stretched or compressed into forms several times larger or smaller than their final shape. Then heat, light or the local chemical environment triggers a transformation into their permanent shape.

“My focus has been to optimize these polymers for many different biomedical applications. My lab studies how altering the chemistry and structure of the polymers affects their chemical, biological and mechanical properties,” said Ken Gall, a professor in the George W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering.

The mechanical properties of these polymers make them extremely attractive for many biomedical applications, according to Gall, who described his research in this area during two presentations at the Materials Research Society’s fall meeting in November.

Engineers are always searching for materials that display unconventional properties able to satisfy the severe requirements for implantation in the body. Particular attention must be paid to the biofunctionality, biostability and biocompatibility of these materials, which come into contact with tissue and body fluids.

With funding from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (NIH), Gall proposed replacing metallic cardiovascular stents with plastic ones because polymers more closely resemble soft biological tissue. Plus, polymers can be designed to gradually dissolve in the body.

“Metal stents are frequently covered in plastic anyway, so we set out to remove the metal leaving just a polymer sheath,” explained Gall. “Also, polymers are more flexible and do not stress the artery walls like the metals.”

Gall’s research group has designed a shape-memory polymer stent that can be compressed and fed through a tiny hole in the body into a blocked artery, just like a conventional stent. Then, the warmth of the body triggers the polymer’s expansion into its permanent shape, resulting in natural deployment without auxiliary devices. This work was published in the journal Biomaterials earlier this year.

For another project, Gall and graduate student David Safranski have been investigating how altering a polymer’s chemistry changes its properties, such as stretchiness. This project was funded by MedShape Solutions, an Atlanta company that Gall co-founded to develop medical devices primarily for use in minimally invasive surgery.

“You can tailor the polymer to moderate its strength, stiffness, stretchiness and expansion rate,” noted Gall.

They found that by changing the chemistry of the polymer backbone to include special side groups, they could increase of the amount of strain the polymer could withstand before failing without sacrificing stiffness. This discovery enabled the creation of polymers that could stretch farther and also push harder during recovery.

Gall and graduate student Scott Kasprzak are exploring how these polymers might be used as a deployable neuronal probe, with funding from the National Institute of Neurological Disorders and Stroke of the NIH.

“We’re looking for smart materials that can be synthesized in the size range of 100 microns – similar to the size of a strand of hair – and then be inserted into brain tissue,” explained Gall. “This type of probe would need to slowly change shape inside the brain as to not disturb any surrounding tissue.”

Another project in Gall’s laboratory is examining the use of these polymers for the spine. Most spinal surgeries are currently not performed arthroscopically, so Gall sees benefits in using these shape-memory materials to enable minimally invasive spinal surgery.

With funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Gall and graduate student Kathryn Smith are developing shape-memory polymers for the spine that are tough – meaning they stretch far and support a lot of weight like native spinal disks.

“This would improve the deliverability and life of artificial disks currently used in the spine. Essentially, we’re just trying to engineer tougher synthetic polymers that can be easily delivered,” explained Gall, who is collaborating on this project with Barbara Boyan and Johnna Temenoff, both of the Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

In addition to exploring different biomedical applications for shape-memory polymers, Gall has also turned his attention to manufacturing them. Walter Voit, a graduate student in the Technological Innovation: Generating Economic Results (TI:GER) program, is investigating how to produce shape-memory polymers at a low cost. More specifically, Voit is examining different types of materials and processing methods that can be used to commercially produce quality polymers for lower cost medical applications.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>