Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing Multi Materials and Graded Structures Now Possible

17.12.2007
The new additive production system, based on High Viscosity Inkjet Printing, is being developed by TNO in The Netherlands under the auspices of the Custom-Fit project. It has several print heads that produce continuous streams of material droplets at high frequency.

Dr. Michiel Willemse is leading the team developing the inkjet printing machine at TNO. He says, “The process is unique in its capability to print highly viscous, UV curable, resins. Material formulations with viscosities up to 500 mPa•s (at ambient temperature) have been printed successfully. This offers the opportunity to print products with unequalled mechanical properties when compared to any other printing systems.”

The High Viscosity Inkjet Printing machine is also capable of printing multi-materials simultaneously. Currently, most additive manufacturing machines are only capable of printing one type of material. Not only is the TNO inkjet process capable of printing multi material, it also enables the mixing and grading of materials in any combination that is desired. This will enable the manufacturing of products with two or more materials that are graded and there will be no distinct boundary between the materials. This will result in products with unique mechanical properties. To enable the modelling of products with multi-material and graded structures, TNO has developed a CAD modeller known as Innerspace. InnerSpace enables a designer to define material property distributions and also the distribution profile. The software uses the STL file as the source file and the STL model defines the outer boundary of the object. It can define the material distribution for a whole object or just part of the object at any location. The data files from InnerSpace are very small and thus easy to transfer.

Within Custom Fit, the system is designed and used to print bio-compatible materials; the next step for the project would be to print scaffolds for implants using bio-resorbable materials, with varying porosity and graded inclusion of e.g. growth enhancers and anti-biotics. Dr. Willemse says, “The big challenge is the further development of the concept of printing bio-resorbable implants. Improvement of the machine is a minor effort compared to approval of the medical procedure for modelling a graded implant, printing and sterilising it, and implanting it into a human patient. Given the level of innovation in both technology, material and medical procedures, acquiring the approval from relevant authority such as FDA (Food and Drug Administration) will require a much bigger effort.”

Sunny - Luisa Martínez - Marín | alfa
Further information:
http://www.custom-fit.org

More articles from Materials Sciences:

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>