Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing Multi Materials and Graded Structures Now Possible

17.12.2007
The new additive production system, based on High Viscosity Inkjet Printing, is being developed by TNO in The Netherlands under the auspices of the Custom-Fit project. It has several print heads that produce continuous streams of material droplets at high frequency.

Dr. Michiel Willemse is leading the team developing the inkjet printing machine at TNO. He says, “The process is unique in its capability to print highly viscous, UV curable, resins. Material formulations with viscosities up to 500 mPa•s (at ambient temperature) have been printed successfully. This offers the opportunity to print products with unequalled mechanical properties when compared to any other printing systems.”

The High Viscosity Inkjet Printing machine is also capable of printing multi-materials simultaneously. Currently, most additive manufacturing machines are only capable of printing one type of material. Not only is the TNO inkjet process capable of printing multi material, it also enables the mixing and grading of materials in any combination that is desired. This will enable the manufacturing of products with two or more materials that are graded and there will be no distinct boundary between the materials. This will result in products with unique mechanical properties. To enable the modelling of products with multi-material and graded structures, TNO has developed a CAD modeller known as Innerspace. InnerSpace enables a designer to define material property distributions and also the distribution profile. The software uses the STL file as the source file and the STL model defines the outer boundary of the object. It can define the material distribution for a whole object or just part of the object at any location. The data files from InnerSpace are very small and thus easy to transfer.

Within Custom Fit, the system is designed and used to print bio-compatible materials; the next step for the project would be to print scaffolds for implants using bio-resorbable materials, with varying porosity and graded inclusion of e.g. growth enhancers and anti-biotics. Dr. Willemse says, “The big challenge is the further development of the concept of printing bio-resorbable implants. Improvement of the machine is a minor effort compared to approval of the medical procedure for modelling a graded implant, printing and sterilising it, and implanting it into a human patient. Given the level of innovation in both technology, material and medical procedures, acquiring the approval from relevant authority such as FDA (Food and Drug Administration) will require a much bigger effort.”

Sunny - Luisa Martínez - Marín | alfa
Further information:
http://www.custom-fit.org

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>