Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repeated Self-Healing Now Possible in Composite Materials

16.04.2014

Researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign have created a 3D vascular system that allows for high-performance composite materials such as fiberglass to heal autonomously, and repeatedly.

Internal damage in fiber-reinforced composites, materials used in structures of modern airplanes and automobiles, is difficult to detect and nearly impossible to repair by conventional methods. A small, internal crack can quickly develop into irreversible damage from delamination, a process in which the layers separate. This remains one of the most significant factors limiting more widespread use of composite materials.


3D microvascular networks for self-healing composites: Researchers were able to achieve more effective self-healing with the herringbone vascular network (top) over a parallel design (bottom), evidenced by the increased mixing (orange-yellow) of individual healing agents (red and green) across a fracture surface.

However, fiber-composite materials can now heal autonomously through a new self-healing system, developed by researchers in the Beckman Institute’s Autonomous Materials Systems (AMS) Group at the University of Illinois at Urbana-Champaign, led by professors Nancy Sottos, Scott White, and Jeff Moore. 

Sottos, White, Moore, and their team created 3D vascular networks—patterns of microchannels filled with healing chemistries—that thread through a fiber-reinforced composite. When damage occurs, the networks within the material break apart and allow the healing chemistries to mix and polymerize, autonomously healing the material, over multiple cycles. These results were detailed in a paper titled “Continuous self-healing life cycle in vascularized structural composites,” published in Advanced Materials.

“This is the first demonstration of repeated healing in a fiber-reinforced composite system,” said Scott White, aerospace engineering professor and co-corresponding author. “Self-healing has been done before in polymers with different techniques and networks, but they couldn’t be translated to fiber-reinforced composites. The missing link was the development of the vascularization technique.”

“The beauty of this self-healing approach is, we don't have to probe the structure and say, this is where the damage occurred and then repair it ourselves,” said Jason Patrick, a Ph.D. candidate in civil engineering and lead author.  

The vasculature within the system integrates dual networks that are isolated from one other. Two liquid healing agents (an epoxy resin and hardener) are sequestered in two different microchannel networks. 

“When a fracture occurs, this ruptures the separate networks of healing agents, automatically releasing them into the crack plane—akin to a bleeding cut,” Patrick said. “As they come into contact with one another in situ, or within the material, they polymerize to essentially form a structural glue in the damage zone. We tested this over multiple cycles and all cracks healed successfully at nearly 100 percent efficiency.”

Notably, the vascular networks within the structure are not straight lines. In order for the healing agents to combine effectively after being released within the crack, the vessels were overlapped to further promote mixing of the liquids, which both have a consistency similar to maple syrup.

Fiberglass and other composite materials are widely used in aerospace, automotive, naval, civil, and even sporting goods because of their high strength-to-weight ratio—they pack a lot of structural strength into a very lean package. However, because the woven laminates are stacked in layers, it is easier for the structure to separate between the layers, making this self-healing system a promising solution to a long-standing problem and greatly extending their lifetime and reliability.

“Additionally, creating the vasculature integrates seamlessly with typical manufacturing processes of polymer composites, making it a strong candidate for commercial use,” said Nancy Sottos, materials science and engineering professor and co-corresponding author. 

Fiber-composite laminates are constructed by weaving and stacking multiple layers of reinforcing fabric, which are then co-infused with a binding polymer resin. Using that same process, the researchers stitched in a sort of fishing line, made from a bio-friendly polymer and coined “sacrificial fiber,” within the composite. Once the composite was fabricated, the entire system was heated to melt and evaporate the sacrificial fibers, leaving behind hollow microchannels, which became the vasculature for the self-healing system.

This work was supported by the Air Force Office of Scientific Research, the Department of Homeland Security Center of Excellence for Explosives Detection, Mitigation, and Response, and the Army Research Laboratory. Jeff Moore, Kevin Hart, Brett Krull, and Charles Diesendruck were also co-authors on the paper.

August Cassens | Eurek Alert!
Further information:
http://beckman.illinois.edu/news/2014/04/self-healing-composites

More articles from Materials Sciences:

nachricht Engineering phase changes in nanoparticle arrays
26.05.2015 | DOE/Brookhaven National Laboratory

nachricht Nanobionics Supercharge Photosynthesis
22.05.2015 | Department of Energy, Office of Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Researchers develop intelligent handheld robots

27.05.2015 | Power and Electrical Engineering

"Hidden" fragrance compound can cause contact allergy

27.05.2015 | Health and Medicine

Supernovas help 'clean' galaxies

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>