Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relaxation leads to lower elasticity

02.03.2011
Model system delivers vital clues on the aging processes of elastic polymers

Many materials, when observed over a sufficiently long period of time, show changes in their mechanical properties. The exact course of these developments depends on the underlying microscopic mechanisms. However, the microscopic structure and the complexity of the systems make direct observation extremely difficult.


Bended actin/fascin bundles indicate stress, incorporated when the network formed. As relaxations over time gradually diminish these tensions, their contribution to the network's elasticity disappears. (length of the bar: 2 µm)
Credit: Picture: TUM

That is why a team led by Professor Andreas Bausch from the Chair of Cellular Biophysics resorted to a model system that can be precisely controlled using actin filaments, a biopolymer that, among other things, is responsible for muscle contractions in the human body. Together with the crosslinking molecule fascin, actin filaments build an interconnected network whose elasticity decreases with increasing age. Deploying a wide-ranging combination of experimental techniques, the researchers have now managed to cast light on the source of these changes.

As the study published in Nature Materials shows, microscopic relaxation processes are the source of the macroscopic changes in the polymer network properties. During the formation of the network internal tensions build up. Because the linking points in the network are not of permanent nature, but rather open and close at random intervals, these tensions gradually diminish. Over a period of ten hours the elasticity drops to about a fifth of the initial value and then remains stable.

"Crosslinked and bundled actin filaments build networks that are essential for the stability of living cells," says Andreas Bausch, head of the Chair of Cellular Biophysics at the TU Muenchen and member of the Excellence Cluster Nanoinitiative Munich (NIM). "By understanding the microscopic causes for the incredible mutability of the cytoskeleton, we are laying the foundations to advance the development of other polymer materials, as well."

This research was funded by the Deutsche Forschungsgemeinschaft (Excellence Cluster Nanosystems Initiative Munich, NIM), the Deutscher Akademischer Auslandsdienst (German Academic Exchange Service), the Elite Nework of Bavaria (CompInt), the CNES and the Région Languedoc Roussillon, as well as the Institut Universitaire de France.

Original publication:

Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,
O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti and A. R. Bausch,
Nature Materials, 10, 236-242 (2011) | DOI: 10.1038/NMAT2939
Link: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat2939.html

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

Further reports about: Biophysics Cellular Nature Materials Relaxation actin filaments living cell

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>