Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Regenerating plastic grows back after damage


Looking at a smooth sheet of plastic in one University of Illinois laboratory, no one would guess that an impact had recently blasted a hole through it.

Illinois researchers have developed materials that not only heal, but regenerate. Until now, self-repairing materials could only bond tiny microscopic cracks. The new regenerating materials fill in large cracks and holes by regrowing material.

Photo by Ryan Gergely

Illinois researchers have developed materials that not only heal, but regenerate. The restorative material is delivered through two, isolated fluid streams (dyed red and blue). The liquid immediately gels and later hardens, resulting in recovery of the entire damaged region. This image is halfway through the restoration process.

Led by professor Scott White, the research team comprises professors Jeffry S. Moore and Nancy Sottos and graduate students Brett Krull, Windy Santa Cruz and Ryan Gergely. They report their work in the May 9 issue of the journal Science.

“We have demonstrated repair of a nonliving, synthetic materials system in a way that is reminiscent of repair-by-regrowth as seen in some living systems,” said Moore, a professor of chemistry.

Such self-repair capabilities would be a boon not only for commercial
goods – imagine a mangled car bumper that repairs itself within minutes of an accident – but also for parts and products that are difficult to replace or repair, such as those used in aerospace applications.

The regenerating capabilities build on the team’s previous work in developing vascular materials. Using specially formulated fibers that disintegrate, the researchers can create materials with networks of capillaries inspired by biological circulatory systems.

“Vascular delivery lets us deliver a large volume of healing agents – which, in turn, enables restoration of large damage zones,” said Sottos, a professor of materials science and engineering. “The vascular approach also enables multiple restorations if the material is damaged more than once.”

For regenerating materials, two adjoining, parallel capillaries are filled with regenerative chemicals that flow out when damage occurs. The two liquids mix to form a gel, which spans the gap caused by damage, filling in cracks and holes. Then the gel hardens into a strong polymer, restoring the plastic’s mechanical strength.

“We have to battle a lot of extrinsic factors for regeneration, including gravity,” said study leader White, a professor of aerospace engineering. “The reactive liquids we use form a gel fairly quickly, so that as it’s released it starts to harden immediately. If it didn’t, the liquids would just pour out of the damaged area and you’d essentially bleed out. Because it forms a gel, it supports and retains the fluids. Since it’s not a structural material yet, we can continue the regrowth process by pumping more fluid into the hole.”

The team demonstrated their regenerating system on the two biggest classes of commercial plastics: thermoplastics and thermosets. The researchers can tune the chemical reactions to control the speed of the gel formation or the speed of the hardening, depending on the kind of damage. For example, a bullet impact might cause a radiating series of cracks as well as a central hole, so the gel reaction could be slowed to allow the chemicals to seep into the cracks before hardening.

The researchers envision commercial plastics and polymers with vascular networks filled with regenerative agents ready to be deployed whenever damage occurs, much like biological healing. Their previous work established ease of manufacturing, so now they are working to optimize the regenerative chemical systems for different types of materials.

“For the first time, we’ve shown that you can regenerate lost material in a structural polymer. That’s the kicker here,” White said, “Prior to this work, if you cut off a piece of material, it’s gone. Now we’ve shown that the material can actually regrow.”

Moore, Sottos and White also are affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I. The Air Force Office of Scientific Research supported this work.

Editor's note: To reach Scott R. White, call 217-333-1077; email

The paper, “Restoration of Large Damage Volumes in Polymers,” is available from

Downloadable high-resolution images with cutlines are available.

Liz Ahlberg | University of Illinois
Further information:

Further reports about: capillaries chemicals cracks damage damaged healing liquids materials plastic regenerating regenerative repair vascular

More articles from Materials Sciences:

nachricht The route to high temperature superconductivity goes through the flat land
23.11.2015 | Aalto University

nachricht Quantum spin could create unstoppable, one-dimensional electron waves
19.11.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Antibody-Drug Compounds and Immunotherapy to Treat Breast Cancer

26.11.2015 | Life Sciences

Get to the point with electric cars

26.11.2015 | Power and Electrical Engineering

Climate study finds evidence of global shift in the 1980s

26.11.2015 | Studies and Analyses

More VideoLinks >>>