Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling Electric Motors as Source of Raw Materials

07.12.2011
Led by Siemens, a consortium of partners from industry and research are developing solutions for recycling electric motors. The consortium is focusing on permanent magnets, which contain a high proportion of rare earth metals and are needed for electric and hybrid vehicles.

In their efforts to develop a solution suitable for application in industry, the partners in the MORE (MOtor REcycling) project are taking into account all links in the value chain — from design and production of motors to retrologistics to reuse in vehicles. The project is being funded by Germany’s Federal Ministry of Education and Research (BMBF).


Permanent magnets with a rare earth metals content of 30 percent are needed for compact, lightweight synchronous motors. Demand for rare earths will rise sharply in the coming years — due to increasing production of electric and hybrid vehicles, to name one reason. On the one hand, China has monopolized the supply of rare earths, so supply shortages can be expected. This is why the BMBF is promoting, among other things, development of resource-conserving technologies for electric vehicles with its “Key Technologies for Electric Mobility” (STROM) initiative.

The researchers working on the MORE project are taking various approaches to electric motor recycling: removal of the roughly one-kilogram magnet from scrap motors, repair and subsequent reuse of the electric motor or its components, and reuse of the magnet materials and raw materials, and the rare earth metals, following their extraction from pre-sorted and shredded materials. Also being developed are concepts for a recycling-compatible motor design, as well as ecological efficiency analyses and models for material cycles.

The results of the project are scheduled to be presented by 2014. The participating experts are from Siemens, Daimler, Umicore, Vacuumschmelze, the University of Erlangen, the Clausthal University of Technology, Oeko-Institut Darmstadt, and the Fraunhofer Institute for Systems and Innovation Research ISI. In the future, the technologies developed during the project could be used for applications in other fields in which rare earths play a key role, for example in wind turbines.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Materials Sciences:

nachricht Scientists announce the quest for high-index materials
24.07.2017 | Moscow Institute of Physics and Technology

nachricht ADIR Project: Lasers Recover Valuable Materials
24.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>