Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling Electric Motors as Source of Raw Materials

07.12.2011
Led by Siemens, a consortium of partners from industry and research are developing solutions for recycling electric motors. The consortium is focusing on permanent magnets, which contain a high proportion of rare earth metals and are needed for electric and hybrid vehicles.

In their efforts to develop a solution suitable for application in industry, the partners in the MORE (MOtor REcycling) project are taking into account all links in the value chain — from design and production of motors to retrologistics to reuse in vehicles. The project is being funded by Germany’s Federal Ministry of Education and Research (BMBF).


Permanent magnets with a rare earth metals content of 30 percent are needed for compact, lightweight synchronous motors. Demand for rare earths will rise sharply in the coming years — due to increasing production of electric and hybrid vehicles, to name one reason. On the one hand, China has monopolized the supply of rare earths, so supply shortages can be expected. This is why the BMBF is promoting, among other things, development of resource-conserving technologies for electric vehicles with its “Key Technologies for Electric Mobility” (STROM) initiative.

The researchers working on the MORE project are taking various approaches to electric motor recycling: removal of the roughly one-kilogram magnet from scrap motors, repair and subsequent reuse of the electric motor or its components, and reuse of the magnet materials and raw materials, and the rare earth metals, following their extraction from pre-sorted and shredded materials. Also being developed are concepts for a recycling-compatible motor design, as well as ecological efficiency analyses and models for material cycles.

The results of the project are scheduled to be presented by 2014. The participating experts are from Siemens, Daimler, Umicore, Vacuumschmelze, the University of Erlangen, the Clausthal University of Technology, Oeko-Institut Darmstadt, and the Fraunhofer Institute for Systems and Innovation Research ISI. In the future, the technologies developed during the project could be used for applications in other fields in which rare earths play a key role, for example in wind turbines.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>