Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record efficiency of 18.7 percent for flexible CIGS solar cells on plastics

20.05.2011
Swiss researchers boost efficiency of flexible solar cells to new world record

It's all about the money. To make solar electricity affordable on a large scale, scientists and engineers worldwide have long been trying to develop a low-cost solar cell, which is both highly efficient and easy to manufacture with high throughput.

Now a team at Empa's Laboratory for Thin Film and Photovoltaics, led by Ayodhya N. Tiwari, has made a major step forward. "The new record value for flexible CIGS solar cells of 18.7% nearly closes the "efficiency gap" to solar cells based on polycrystalline silicon (Si) wafers or CIGS thin film cells on glass", says Tiwari. He is convinced that "flexible and lightweight CIGS solar cells with efficiencies comparable to the "best-in-class" will have excellent potential to bring about a paradigm shift and to enable low-cost solar electricity in the near future."

One major advantage of flexible high-performance CIGS solar cells is the potential to lower manufacturing costs through roll-to-roll processing while at the same time offering a much higher efficiency than the ones currently on the market. What's more, such lightweight and flexible solar modules offer additional cost benefits in terms of transportation, installation, structural frames for the modules etc., i.e. they significantly reduce the so-called "balance of system" costs. Taken together, the new CIGS polymer cells exhibit numerous advantages for applications such as facades, solar farms and portable electronics. With high-performance devices now within reach, the new results suggest that monolithically-interconnected flexible CIGS solar modules with efficiencies above 16% should be achievable with the recently developed processes and concepts.

At the forefront of efficiency improvements

In recent years, thin film photovoltaic technology based on glass substrates has gained sufficient maturity towards industrial production; flexible CIGS technology is, however, still an emerging field. The recent improvements in efficiency in research labs and pilot plants – among others by Tiwari's group, first at ETH Zurich and since a couple of years now at Empa – are contributing to performance improvements and to overcoming manufacturability barriers.

Working closely with scientists at FLISOM, a start-up company who is scaling up and commercializing the technology, the Empa team made significant progress in low-temperature growth of CIGS layers yielding flexible CIGS cells that are ever more efficient, up from a record value of 14.1% in 2005 to the new "high score" of 18.7% for any type of flexible solar cell grown on polymer or metal foil. The latest improvements in cell efficiency were made possible through a reduction in recombination losses by improving the structural properties of the CIGS layer and the proprietary low-temperature deposition process for growing the layers as well as in situ doping with Na during the final stage. With these results, polymer films have for the first time proven to be superior to metal foils as a carrier substrate for achieving highest efficiency.

Record efficiencies of up to 17.5% on steel foils covered with impurity diffusion barriers were so far achieved with CIGS growth processes at temperatures exceeding 550°C. However, when applied to steel foil without any diffusion barrier, the proprietary low temperature CIGS deposition process developed by Empa and FLISOM for polymer films easily matched the performance achieved with high-temperature procedure, resulting in an efficiency of 17.7%. The results suggest that commonly used barrier coatings for detrimental impurities on metal foils would not be required. "Our results clearly show the advantages of the low-temperature CIGS deposition process for achieving highest efficiency flexible solar cells on polymer as well as metal foils", says Tiwari. The projects were supported by the Swiss National Science Foundation (SNSF), the Commission for Technology and Innovation (CTI), the Swiss Federal Office of Energy (SFOE), EU Framework Programmes as well as by Swiss companies W.Blösch AG and FLISOM.

Scaling up production of flexible CIGS solar cells

The continuous improvement in energy conversion efficiencies of flexible CIGS solar cells is no small feat, says Empa Director Gian-Luca Bona. "What we see here is the result of an in-depth understanding of the material properties of layers and interfaces combined with an innovative process development in a systematic manner. Next, we need to transfer these innovations to industry for large scale production of low-cost solar modules to take off." Empa scientists are currently working together with FLISOM to further develop manufacturing processes and to scale up production.

Prof. Dr. Ayodhya N. Tiwari | EurekAlert!
Further information:
http://www.empa.ch

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>