Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rattled Atoms Mimic High-Temperature Superconductivity

08.12.2014

X-ray Laser Experiment Provides First Look at Changes in Atomic Structure that Support Superconductivity

An experiment at the Department of Energy’s SLAC National Accelerator Laboratory provided the first fleeting glimpse of the atomic structure of a material as it entered a state resembling room-temperature superconductivity – a long-sought phenomenon in which materials might conduct electricity with 100 percent efficiency under everyday conditions.


Jörg Harms/Max Planck Institute for the Structure and Dynamics of Matter

In a high-temperature superconducting material known as YBCO, light from a laser causes oxygen atoms (red) to vibrate between layers of copper oxide that are just two molecules thick. (The copper atoms are shown in blue.) This jars atoms in those layers out of their normal positions in a way that likely favors superconductivity. In this short-lived state, the distance between copper oxide planes within a layer increases, while the distance between the layers decreases.

Researchers used a specific wavelength of laser light to rattle the atomic structure of a material called yttrium barium copper oxide, or YBCO. Then they probed the resulting changes in the structure with an X-ray laser beam from the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.

They discovered that the initial exposure to laser light triggered specific shifts in copper and oxygen atoms that squeezed and stretched the distances between them, creating a temporary alignment that exhibited signs of superconductivity for a few trillionths of a second at well above room temperature – up to 60 degrees Celsius (140 degrees Fahrenheit). The scientists coupled data from the experiment with theory to show how these changes in atomic positions allow a transfer of electrons that drives the superconductivity.

New Views of Atoms in Motion

“This is a highly interesting state, even though it only exists for a short period of time,” said Roman Mankowsky of the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, who was lead author of a report on the experiment in the Dec. 4 print issue of Nature. “When the laser excites the material, it shifts the atoms and changes the structure. We hope these results will ultimately help in the design of new materials to enhance superconductivity.”

Sustaining such a state at room temperature would revolutionize many fields, making the electrical grid more efficient and enabling more powerful and compact computers. Traditional superconductors operate only at temperatures close to absolute zero. YBCO is one of a handful of materials discovered since 1986 that superconduct at somewhat higher temperatures; but they still have to be chilled to at least minus 135 degrees Celsius in order to sustain superconductivity, and scientists still don’t know what allows these so-called high-temperature superconductors to carry electricity with zero resistance.

A Powerful Tool for Exploring Superconductivity

Josh Turner, a SLAC staff scientist who has led other studies of YBCO at the LCLS, said powerful tools such as X-ray lasers have excited new interest in superconductor research by allowing researchers to isolate a specific property that they want to learn more about. This is important because high-temperature superconductors can exhibit a tangle of magnetic, electronic and structural properties that may compete or cooperate as the material moves toward a superconducting state. For example, another recently published LCLS study found that exciting YBCO with the same optical laser light disrupts an electronic order that competes with superconductivity.

“What LCLS is now showing us is how these different properties change over short times,” Turner said. “We can actually see how the electrons or atoms are moving.”

Mankowsky said future experiments at LCLS could try to sustain the superconducting state for longer periods, use a combination of experimental techniques to study how other properties evolve in the transition into the superconducting state and explore whether the same structural changes are at work in other high-temperature superconductors.

Researchers from the National Center for Scientific Research in France, Paul Scherrer Institute in Switzerland, Max Planck Institute for Solid State Research in Germany, Swiss Federal Institute of Technology, College of France, University of Geneva, Oxford University in the United Kingdom, the Center for Free-Electron Laser Science in Germany, and University of Hamburg in Germany also participated in the study. The work was supported by the European Research Council, German Science Foundation, Swiss National Superconducting Center and Swiss National Science Foundation.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Andrew Gordon | newswise

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>