Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare earth metal enhances phosphate glass

16.12.2009
Adding cerium oxide to phosphate glass rather than the commonly used silicate glass may make glasses that block ultraviolet light and have increased radiation damage resistance while remaining colorless, according to Penn State researchers. These cerium-containing phosphate glasses have many commercial applications for use in windows, sunglasses and solar cells.

"We wanted to get larger amounts of cerium into glass, because of its beneficial properties, and then investigate the properties of the glasses," said Jen Rygel, graduate student in materials science and engineering.

Cerium exists in two states in glasses -- cerium (III) and cerium (IV) -- both states strongly absorb ultraviolet light. For years cerium has been added to silicate glass to enhance its ultraviolet absorbing capacity. The problem has always been that silicate glass can only dissolve so much cerium before it becomes saturated and can hold no more. Also, with high concentrations of cerium, silicate glass begins to turn yellow -- an undesirable characteristic for such things as windows or sunglasses.

Phosphate glasses have a more flexible structure then silicate glasses, which allow higher percentages of cerium to be incorporated before it begins to color. Rygel, working with Carlo Pantano, distinguished professor of materials science and engineering, and director of Penn State's Materials Research Institute, synthesized and compared 11 glasses with varying concentrations of cerium, aluminum, phosphorus and silica.

They found that they could make phosphate glasses with 16 times more cerium oxide than silicate glasses while maintaining the same coloration and ability to absorb ultraviolet light. They published their work in today's (Dec. 15) issue of Non-Crystalline Solids.

"We were able to get a lot more cerium into our phosphate glass without sacrificing the optical transmission -- they both still looked clear," said Rygel.

The researchers could get more cerium into phosphate glass compared to silicate because of the different bonding networks silica and phosphorus form when made into glasses.

One explanation for why phosphate glass can incorporate more cerium than silicate glass without yellowing may be that the absorbing ranges for the two cerium states -- cerium (III) and cerium (IV) -- are shifted to absorb less blue light in phosphate glasses.

"A good example is in solar cells," said Rygel. "The wavelengths that solar cells use aren't ultraviolet, and actually ultraviolet radiation can cause damage to the electronics of a solar cell. If you add cerium to the glass you can prevent the ultraviolet from getting down to the photovoltaic cells, potentially increasing their lifetime."

To synthesize their glasses the researchers used a procedure called open-crucible melting. Raw materials such as phosphorus pentoxide, aluminum phosphate, cerium phosphate and silicon dioxide were combined in a crucible and heated in a high-temperature furnace to a temperature of 3000 degrees Fahrenheit melting the contents to a liquid.

"After it's all melted, we pull it out of the furnace and pour it into a graphite mold," said Rygel. "The glass is then cooled down slowly so it doesn't break due to thermal stress."

Cerium additions do not just block ultraviolet light. Increasing a glass' cerium concentration can also increase its resistance to radiation damage from x-rays and gamma rays by capturing freed electrons.

"Radiation can kick electrons free from atoms," said Rygel. "You can see this by looking at what happens to a Coke bottle over time. It darkens because of radiation exposure."

The proposed mechanisms for cerium's ability to block radiation are all based on cerium's two states and their ratio within the glass. Because of these implications Rygel wanted to know what percentages of each existed within her glasses.

Using X-ray photoelectron spectroscopy Rygel could determine whether the cerium in the glass was mostly in the cerium (III) or cerium (IV) oxidation state, or a ratio of the two. She found that all of her glasses contained approximately 95 percent cerium (III).

The National Science Foundation and the U.S. Air Force Research Laboratory supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>