Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare earth metal enhances phosphate glass

16.12.2009
Adding cerium oxide to phosphate glass rather than the commonly used silicate glass may make glasses that block ultraviolet light and have increased radiation damage resistance while remaining colorless, according to Penn State researchers. These cerium-containing phosphate glasses have many commercial applications for use in windows, sunglasses and solar cells.

"We wanted to get larger amounts of cerium into glass, because of its beneficial properties, and then investigate the properties of the glasses," said Jen Rygel, graduate student in materials science and engineering.

Cerium exists in two states in glasses -- cerium (III) and cerium (IV) -- both states strongly absorb ultraviolet light. For years cerium has been added to silicate glass to enhance its ultraviolet absorbing capacity. The problem has always been that silicate glass can only dissolve so much cerium before it becomes saturated and can hold no more. Also, with high concentrations of cerium, silicate glass begins to turn yellow -- an undesirable characteristic for such things as windows or sunglasses.

Phosphate glasses have a more flexible structure then silicate glasses, which allow higher percentages of cerium to be incorporated before it begins to color. Rygel, working with Carlo Pantano, distinguished professor of materials science and engineering, and director of Penn State's Materials Research Institute, synthesized and compared 11 glasses with varying concentrations of cerium, aluminum, phosphorus and silica.

They found that they could make phosphate glasses with 16 times more cerium oxide than silicate glasses while maintaining the same coloration and ability to absorb ultraviolet light. They published their work in today's (Dec. 15) issue of Non-Crystalline Solids.

"We were able to get a lot more cerium into our phosphate glass without sacrificing the optical transmission -- they both still looked clear," said Rygel.

The researchers could get more cerium into phosphate glass compared to silicate because of the different bonding networks silica and phosphorus form when made into glasses.

One explanation for why phosphate glass can incorporate more cerium than silicate glass without yellowing may be that the absorbing ranges for the two cerium states -- cerium (III) and cerium (IV) -- are shifted to absorb less blue light in phosphate glasses.

"A good example is in solar cells," said Rygel. "The wavelengths that solar cells use aren't ultraviolet, and actually ultraviolet radiation can cause damage to the electronics of a solar cell. If you add cerium to the glass you can prevent the ultraviolet from getting down to the photovoltaic cells, potentially increasing their lifetime."

To synthesize their glasses the researchers used a procedure called open-crucible melting. Raw materials such as phosphorus pentoxide, aluminum phosphate, cerium phosphate and silicon dioxide were combined in a crucible and heated in a high-temperature furnace to a temperature of 3000 degrees Fahrenheit melting the contents to a liquid.

"After it's all melted, we pull it out of the furnace and pour it into a graphite mold," said Rygel. "The glass is then cooled down slowly so it doesn't break due to thermal stress."

Cerium additions do not just block ultraviolet light. Increasing a glass' cerium concentration can also increase its resistance to radiation damage from x-rays and gamma rays by capturing freed electrons.

"Radiation can kick electrons free from atoms," said Rygel. "You can see this by looking at what happens to a Coke bottle over time. It darkens because of radiation exposure."

The proposed mechanisms for cerium's ability to block radiation are all based on cerium's two states and their ratio within the glass. Because of these implications Rygel wanted to know what percentages of each existed within her glasses.

Using X-ray photoelectron spectroscopy Rygel could determine whether the cerium in the glass was mostly in the cerium (III) or cerium (IV) oxidation state, or a ratio of the two. She found that all of her glasses contained approximately 95 percent cerium (III).

The National Science Foundation and the U.S. Air Force Research Laboratory supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>