Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare earth metal enhances phosphate glass

16.12.2009
Adding cerium oxide to phosphate glass rather than the commonly used silicate glass may make glasses that block ultraviolet light and have increased radiation damage resistance while remaining colorless, according to Penn State researchers. These cerium-containing phosphate glasses have many commercial applications for use in windows, sunglasses and solar cells.

"We wanted to get larger amounts of cerium into glass, because of its beneficial properties, and then investigate the properties of the glasses," said Jen Rygel, graduate student in materials science and engineering.

Cerium exists in two states in glasses -- cerium (III) and cerium (IV) -- both states strongly absorb ultraviolet light. For years cerium has been added to silicate glass to enhance its ultraviolet absorbing capacity. The problem has always been that silicate glass can only dissolve so much cerium before it becomes saturated and can hold no more. Also, with high concentrations of cerium, silicate glass begins to turn yellow -- an undesirable characteristic for such things as windows or sunglasses.

Phosphate glasses have a more flexible structure then silicate glasses, which allow higher percentages of cerium to be incorporated before it begins to color. Rygel, working with Carlo Pantano, distinguished professor of materials science and engineering, and director of Penn State's Materials Research Institute, synthesized and compared 11 glasses with varying concentrations of cerium, aluminum, phosphorus and silica.

They found that they could make phosphate glasses with 16 times more cerium oxide than silicate glasses while maintaining the same coloration and ability to absorb ultraviolet light. They published their work in today's (Dec. 15) issue of Non-Crystalline Solids.

"We were able to get a lot more cerium into our phosphate glass without sacrificing the optical transmission -- they both still looked clear," said Rygel.

The researchers could get more cerium into phosphate glass compared to silicate because of the different bonding networks silica and phosphorus form when made into glasses.

One explanation for why phosphate glass can incorporate more cerium than silicate glass without yellowing may be that the absorbing ranges for the two cerium states -- cerium (III) and cerium (IV) -- are shifted to absorb less blue light in phosphate glasses.

"A good example is in solar cells," said Rygel. "The wavelengths that solar cells use aren't ultraviolet, and actually ultraviolet radiation can cause damage to the electronics of a solar cell. If you add cerium to the glass you can prevent the ultraviolet from getting down to the photovoltaic cells, potentially increasing their lifetime."

To synthesize their glasses the researchers used a procedure called open-crucible melting. Raw materials such as phosphorus pentoxide, aluminum phosphate, cerium phosphate and silicon dioxide were combined in a crucible and heated in a high-temperature furnace to a temperature of 3000 degrees Fahrenheit melting the contents to a liquid.

"After it's all melted, we pull it out of the furnace and pour it into a graphite mold," said Rygel. "The glass is then cooled down slowly so it doesn't break due to thermal stress."

Cerium additions do not just block ultraviolet light. Increasing a glass' cerium concentration can also increase its resistance to radiation damage from x-rays and gamma rays by capturing freed electrons.

"Radiation can kick electrons free from atoms," said Rygel. "You can see this by looking at what happens to a Coke bottle over time. It darkens because of radiation exposure."

The proposed mechanisms for cerium's ability to block radiation are all based on cerium's two states and their ratio within the glass. Because of these implications Rygel wanted to know what percentages of each existed within her glasses.

Using X-ray photoelectron spectroscopy Rygel could determine whether the cerium in the glass was mostly in the cerium (III) or cerium (IV) oxidation state, or a ratio of the two. She found that all of her glasses contained approximately 95 percent cerium (III).

The National Science Foundation and the U.S. Air Force Research Laboratory supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>