Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not just for raincoats

09.02.2011
Discovery of mini 'water hammer' effect could lead to materials that water really hates

Researchers from Northwestern University and the Massachusetts Institute of Technology (MIT) have studied individual water droplets and discovered a miniature version of the "water hammer," an effect that produces the familiar radiator pipe clanging in older buildings.

In piping systems, the water hammer occurs when fluid is forced to stop abruptly, causing huge pressure spikes that can rupture pipe walls. Now, for the first time, the researchers have observed this force on the scale of microns: such pressure spikes can move through a water droplet, causing it to be impaled on textured superhydrophobic surfaces, even when deposited gently.

This insight of how droplets get stuck on surfaces could lead to the design of more effective superhydrophobic, or highly water-repellant, surfaces for condensers in desalination and steam power plants, de-icing for aircraft engines and wind turbine blades, low-drag surfaces in pipes and even raincoats. In certain cases, improved surfaces could improve energy efficiency on many orders of magnitude. (About half of all electricity generated in the world comes from steam turbines.)

The research is published by the journal Physical Review Letters.

"We want to design surface textures that will cause the water to really hate those surfaces," said Neelesh A. Patankar, associate professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science. "Improving current hydrophobic materials could result in a 60 percent drag reduction in some applications, for example."

Patankar collaborated with Kripa K. Varanasi, the d'Arbeloff Assistant Professor of Mechanical Engineering at MIT. The two are co-corresponding authors of the paper. Patankar initiated this study in which he and Varanasi led the analytical work, and the experiments were conducted at MIT in Varanasi's lab. Other co-authors are MIT mechanical engineering graduate students Hyuk-Min Kwon and Adam Paxson.

In designing superhydrophobic surfaces, one goal is to produce surfaces much like the natural lotus leaf. Water droplets on these leaves bead up and roll off easily, taking any dirt with them. Contrary to what one might think, the surface of the leaves is rough, not smooth. The droplets sit on microscopic bumps, as if resting on a bed of nails.

"If a water droplet impales the grooves of this bumpy texture, it becomes stuck instead of rolling off," Patankar said. "Such transitions are well known for small static droplets. Our study shows that the impalement of water is very sensitive to the dynamic 'water hammer' effect, which was not expected."

To show this, the researchers imaged millimeter-scale water droplets gently deposited onto rough superhydrophobic surfaces. (The surfaces were made of silicon posts, with spacing from post edge to post edge ranging from 40 to 100 microns, depending on the experiment.) Since these drops were on the millimeter scale and being deposited gently, prior understanding was to assume that gravitational force is not strong enough to push the water into the roughness grooves. The Northwestern and MIT researchers are the first to show this is not true.

They observed that as a droplet settles down on the surface (due to the drop's own weight) there is a rapid deceleration in the drop that produces a brief burst of high pressure, sending a wave through the droplet. The droplet is consequently pinned on the rough surface. That's the powerful mini water hammer effect at work.

By understanding the underlying physics of this transition, the study reveals that there is actually a window of droplet sizes that avoid impalement. Although focused on drop deposition, this idea is quite general and applies to any scenario where the water velocity is changing on a short (less than a millisecond) time scale. This insight can lead to the design of more robust superhydrophobic surfaces that can resist water impalement even under the dynamic conditions typical in industrial setups.

"One way to reduce impalement is to design a surface texture that results in a surface that sustains extremely high pressures," Patankar said. "It is the length scale of the roughness that is important." To resist impalement, the height of a bump and the distance between bumps need to be just right. Hundreds of nanometer scale roughness can lead to robust surfaces.

"Our ultimate goal," he added, "is the invention of textured surfaces such that a liquid in contact with it will, at least partially, vaporize next to the surface -- or sustain air pockets -- and self-lubricate. This is similar to how an ice skater glides on ice due to a cushion of thin lubricating liquid film between the skates and the ice. A critical step is to learn how to resist impalement of water on the roughness. Our work on water hammer-induced impalement is a crucial advance toward that goal of ultra-slippery vapor stabilizing surfaces."

The paper is titled "Rapid Deceleration-driven Wetting Transition During Pendant Drop Deposition on Superhydrophobic Surfaces."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>