Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainbows without pigments offer new defence against fraud

19.05.2011
Scientists from the University of Sheffield have developed pigment-free, intensely coloured polymer materials, which could provide new, anti-counterfeit devices on passports or banknotes due to their difficulty to copy.

The polymers do not use pigments but instead exhibit intense colour due to their structure, similar to the way nature creates colour for beetle shells and butterfly wings.

These colours were created by highly ordered polymer layers, which the researchers produced using block copoylmers (an alloy of two different polymers). By mixing block copolymers together, the researchers were able to create any colour in the rainbow from two non-coloured solutions.

This type of polymer then automatically organises itself into a layered structure, causing optical effects similar to opals. The colour also changes depending on the viewing angle. This system has huge advantage in terms of cost, processing and colour selection compared to existing systems.

The complexity of the chemistry involved in making the polymer means they are very difficult for fraudsters to copy, making them ideally suited for use on passports or banknotes.

The academics used Diamond Light Source, the UK's national synchrotron science facility in Oxfordshire, to probe the ordered, layered structures using high power X-rays. This helped them understand how the colours were formed, and how to improve the appearance.

Dr Andrew Parnell, from the University of Sheffield's Department of Physics and Astronomy, said: "Our aim was to mimic the wonderful and funky coloured patterns found in nature, such as Peacock feathers. We now have a painter's palette of colours that we can choose from using just two polymers to do this. We think that these materials have huge potential to be used commercially."

Professor Nick Terrill, Principal Beamline Scientist for I22, the Diamond laboratory used for the experiment, explained: "Small Angle X-ray Scattering is a simple technique that in this case has provided valuable confirmatory information. By using Diamond's X-rays to confirm the structure of the polymer, the group was able to identify the appropriate blends for the colours required, meaning they can now tailor the polymer composition accordingly."

Notes for Editors: The institutions involved in the research include the University of Sheffield, the University of Hull and Diamond Light Source in Oxfordshire.

To view the paper, 'Continuously tuneable optical filters from self-assembled block copolymer blends', published in Soft Matter, please visit the link below.

Diamond Light Source is funded by the UK Government via the Science and Technology Facilities Council (STFC) and by the Wellcome Trust.

The Diamond synchrotron generates extremely intense pin-point beams of light of exceptional quality ranging from X-rays, ultra-violet and infrared. Diamond´s X-rays are around 100 billion times brighter than a standard hospital X-ray machine.

Over 2000 researchers use Diamond to conduct experiments in a wide range of disciplines including health and medicine, structural biology, energy, engineering, earth and environmental sciences, solid-state physics, materials & magnetism, nanoscience, electronics, chemistry and cultural heritage.

For more details please visit the link below.

Fusion IP plc (Fusion) was established in 2002 to commercialise university-generated intellectual property. It has long-term exclusive agreements with two of the UK´s leading research intensive universities, the University of Sheffield and Cardiff University, giving it exclusive access to a combined R&D spend of over £185m a year.

Fusion's first agreement was a ten-year exclusive arrangement with the University of Sheffield giving it the right to commercialise (through both the creation of spin-out companies and licensing) research, owned by the University, initially in the area of medical life sciences. This agreement was expanded in July 2008 to include all non-life science research-generated IP such as energy, engineering and electronics. Fusion has significant shareholdings in a portfolio of Sheffield University spin-out companies including Simcyp, Magnomatics, Diurnal and Phase Focus. For more details please visit the link below.

For further information please contact: Shemina Davis, Media Relations Officer, on 0114 2225339 or email shemina.davis@sheffield.ac.uk

Shemina Davis | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>