Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality products from rubber residues

06.11.2012
Rubber residues can be downcycled to floor coverings and safety crashpads, and for the first time, also processed into high-quality plastics. A new kind of material makes it possible: the environmentally-friendly material mix is called EPMT.

Each year throughout the world, up to 22 million tons of rubber are processed and a large portion of it goes into the production of vehicle tires. Once the products reach the end of their useful life, they typically land in the incinerator. In the best case, the waste rubber is recycled into secondary products.


Elastomeric powders can be used in a variety of ways in high-quality materials.
© Fraunhofer UMSICHT

Ground to powder, the rubber residues can be found, for example, in the floor coverings used at sports arenas and playgrounds, and in doormats. But until now, the appropriate techniques for producing high-quality materials from these recyclables did not exist. Researchers at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen recently succeeded in optimizing the recycling of rubber waste materials. They have developed a material that can be processed into high-quality products, like wheel and splashguard covers, handles, knobs and steerable castors.

The new plastic compounds are called elastomer powder modified thermoplastics or EPMT for short. They are comprised of rubber residues crushed into elastomer powder that are blended with thermoplastics. “In the first step, the rubber residues – that can be meter-long rubber pieces are granulated to three-millimeter large particles. The particles are cooled with liquid nitrogen and then ground into elastomeric powders. This is then conducted to the melt-mix process with thermoplastics and additives. Here we use, for example, polypropylene as a thermoplastic material,” as Dr. Holger Wack, scientist at UMSICHT, explains the production process. Working jointly with his colleagues Damian Hintemann and Nina Kloster, the trio collaborates on the “EXIST Research Transfer” project sponsored by the Federal Ministry for Economics and Technology BMWi, where they work meticulously on various recipes for new blends of materials that are already protected by patent and trademark rights.

Variable material properties

The compound stands out from a number of different perspectives: The crushing of rubber waste is more environmentally-friendly and resource-efficient than producing new rubber products – an important aspect in view of the rising costs of energy and raw materials. “EPMT may contain up to 80 percent residual rubber; only 20 percent is made up by the thermoplastics,” says Wack. EPMT can be easily processed in injection molding and extrusion machines, and in turn, these products are themselves recyclable. The clou: The physical and mechanical material properties of the substance – like elasticity, breaking strain and hardness – can be individually modified, according to the customer’s wishes.

Altogether, three basic recipes have been developed that collectively can be processed on the large technical production machines. The researchers are capable of producing 100 to 350 kilograms of EPMT per hour. Spurred on by this success, Wack and both of his colleagues founded Ruhr Compounds GmbH. In addition to the production and the sale of EPMT materials, this Fraunhofer spin-off offers custom-made service packages: “We determine which of the customer’s materials can be replaced by EPMT, develop customized recipes and also take into account the settings required at our customers‘ industrial facilities,” says the scientist.

The widest array of industries will benefit from the expertise of these professionals: processors of thermoplastic elastomers can obtain EPMT and further process it into products. Industrial companies whose work involves elastomers – such as the industrial and construction sectors, or car-makers and athletics – could recycle these products, make EPMT from them, incorporate them into their existing products and thereby close the materials cycle.

Nike tests EPMT

In the “Re-use a Shoe” project, sports gear maker Nike has been collecting used sneakers for a while now, recycled their soles and under the label “Nike Grind”, reprocessed them as filler material for sports arenas and running track surfaces. The EPMT compound of the Fraunhofer researchers enables Nike to place new products on the market. As one of its official promotional partners, “Tim Green Gifts” created the first EPMT-based promotional articles under the “Nike Grind” brand, like frisbees, shoehorns and boomerangs. Discussions about using new EPMT compounds in the original portfolio, such as zippers, bag bases and sports equipment, have also been initiated. “We are extremely excited about this collaboration,” says Wack.

Dr. rer. nat. Holger Wack | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/november/quality-products-from-rubber-residues.html

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>