Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality products from rubber residues

06.11.2012
Rubber residues can be downcycled to floor coverings and safety crashpads, and for the first time, also processed into high-quality plastics. A new kind of material makes it possible: the environmentally-friendly material mix is called EPMT.

Each year throughout the world, up to 22 million tons of rubber are processed and a large portion of it goes into the production of vehicle tires. Once the products reach the end of their useful life, they typically land in the incinerator. In the best case, the waste rubber is recycled into secondary products.


Elastomeric powders can be used in a variety of ways in high-quality materials.
© Fraunhofer UMSICHT

Ground to powder, the rubber residues can be found, for example, in the floor coverings used at sports arenas and playgrounds, and in doormats. But until now, the appropriate techniques for producing high-quality materials from these recyclables did not exist. Researchers at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen recently succeeded in optimizing the recycling of rubber waste materials. They have developed a material that can be processed into high-quality products, like wheel and splashguard covers, handles, knobs and steerable castors.

The new plastic compounds are called elastomer powder modified thermoplastics or EPMT for short. They are comprised of rubber residues crushed into elastomer powder that are blended with thermoplastics. “In the first step, the rubber residues – that can be meter-long rubber pieces are granulated to three-millimeter large particles. The particles are cooled with liquid nitrogen and then ground into elastomeric powders. This is then conducted to the melt-mix process with thermoplastics and additives. Here we use, for example, polypropylene as a thermoplastic material,” as Dr. Holger Wack, scientist at UMSICHT, explains the production process. Working jointly with his colleagues Damian Hintemann and Nina Kloster, the trio collaborates on the “EXIST Research Transfer” project sponsored by the Federal Ministry for Economics and Technology BMWi, where they work meticulously on various recipes for new blends of materials that are already protected by patent and trademark rights.

Variable material properties

The compound stands out from a number of different perspectives: The crushing of rubber waste is more environmentally-friendly and resource-efficient than producing new rubber products – an important aspect in view of the rising costs of energy and raw materials. “EPMT may contain up to 80 percent residual rubber; only 20 percent is made up by the thermoplastics,” says Wack. EPMT can be easily processed in injection molding and extrusion machines, and in turn, these products are themselves recyclable. The clou: The physical and mechanical material properties of the substance – like elasticity, breaking strain and hardness – can be individually modified, according to the customer’s wishes.

Altogether, three basic recipes have been developed that collectively can be processed on the large technical production machines. The researchers are capable of producing 100 to 350 kilograms of EPMT per hour. Spurred on by this success, Wack and both of his colleagues founded Ruhr Compounds GmbH. In addition to the production and the sale of EPMT materials, this Fraunhofer spin-off offers custom-made service packages: “We determine which of the customer’s materials can be replaced by EPMT, develop customized recipes and also take into account the settings required at our customers‘ industrial facilities,” says the scientist.

The widest array of industries will benefit from the expertise of these professionals: processors of thermoplastic elastomers can obtain EPMT and further process it into products. Industrial companies whose work involves elastomers – such as the industrial and construction sectors, or car-makers and athletics – could recycle these products, make EPMT from them, incorporate them into their existing products and thereby close the materials cycle.

Nike tests EPMT

In the “Re-use a Shoe” project, sports gear maker Nike has been collecting used sneakers for a while now, recycled their soles and under the label “Nike Grind”, reprocessed them as filler material for sports arenas and running track surfaces. The EPMT compound of the Fraunhofer researchers enables Nike to place new products on the market. As one of its official promotional partners, “Tim Green Gifts” created the first EPMT-based promotional articles under the “Nike Grind” brand, like frisbees, shoehorns and boomerangs. Discussions about using new EPMT compounds in the original portfolio, such as zippers, bag bases and sports equipment, have also been initiated. “We are extremely excited about this collaboration,” says Wack.

Dr. rer. nat. Holger Wack | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/november/quality-products-from-rubber-residues.html

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>