Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Put a Cork in It: Research Details Quiet Composite Material

22.06.2012
Cork, known for its use in such low-tech applications as wine bottle stoppers and bulletin boards, now shows promise as the core material in composite sandwich structures for use in high-tech automotive, aircraft and energy applications.

A research team at the University of Delaware is investigating this natural material as an environmentally friendly solution for quiet sandwich composites. They recently published a paper on the work in Scientific Reports, an online, open-access research publication from the publishers of Nature that covers all areas of the natural sciences.

“Cork is a natural product with intriguing properties,” says Jonghwan Suhr, assistant professor in the Department of Mechanical Engineering and an affiliated faculty member in the Center for Composite Materials.

“It’s energy absorbing, tough, lightweight and impact resistant, and it has excellent vibrational and acoustic damping properties. Its unique cellular arrangement also results in good thermal properties, and it’s impermeable to moisture.”

Suhr was adviser to the lead author on the paper, James Sargianis, who completed his master’s degree in mechanical engineering at UD in May. The third member of the team was Hyung-ick Kim, a postdoctoral researcher at CCM who is an expert in mechanical characterization of advanced materials.

Sargianis’s graduate research focused on exploring natural material-based sandwich composites with enhanced noise mitigation. Cork turned out to be one of the most promising alternatives to traditional sandwich structures.

Suhr explains that composite sandwich structures — typically made from synthetic foam cores or honeycomb materials bonded to carbon-epoxy face sheets — are commonly used in aerospace applications because they offer high bending stiffness and are very lightweight. However, he says, they are also good at radiating noise, which is not a desirable feature in an airplane. The current solution is to line the interior with four to six inches of glass fabric, but this increases weight and reduces space inside the cabin.

Enter cork as the new core for the sandwich.

In the recently reported study, the researchers compared sandwich structures made from a natural cork agglomerate core with those using a core made from a high-quality synthetic foam called Rohacell. Carbon-epoxy was used as the face sheet material with both cores.

“We achieved a 250 percent improvement in damping performance using the cork-based materials, with no sacrifice in mechanical properties,” Suhr says. “Further, cork radiates little to no noise and is inexpensive. It’s also sustainable and environmentally friendly because there are no carbon emissions associated with its production.”

Since the paper was published in May, the team has been approached by Portugal-based Amorim, a world leader in the production of thermal and acoustic insulation materials based on natural raw cork.

In an email to Suhr, a company representative referred to the article as “excellent” and wrote, “We are astonished and very well surprised with such detail on your study.” A group from Amorim plans to visit UD soon to learn more about the work.

Suhr sees the potential for application of cork-based sandwich structures in not only aircraft cabins but also car engine mounts, launch vehicle fairings, and wind turbine blades.

In the next phase of the project, the team will investigate the low-velocity impact of these materials.

Sargianis, who also earned his bachelor’s degree at UD, in 2010, has accepted a position with the Naval Air Systems Command (NAVAIR) in Lakehurst, N.J. He took first-place honors at the 2012 SAMPE National Student Research Symposium in May for his work on natural material based-sandwich composites.

“It was great to work with James while he was here at UD,” Suhr says. “He knows what he’s doing, and he’s a great problem solver. I have no doubt that he will become a leader in science and technology.”

See the original story at
http://www.udel.edu/udaily/2012/jun/cork-sandwich-composites-061812.html

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>