Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Put a Cork in It: Research Details Quiet Composite Material

22.06.2012
Cork, known for its use in such low-tech applications as wine bottle stoppers and bulletin boards, now shows promise as the core material in composite sandwich structures for use in high-tech automotive, aircraft and energy applications.

A research team at the University of Delaware is investigating this natural material as an environmentally friendly solution for quiet sandwich composites. They recently published a paper on the work in Scientific Reports, an online, open-access research publication from the publishers of Nature that covers all areas of the natural sciences.

“Cork is a natural product with intriguing properties,” says Jonghwan Suhr, assistant professor in the Department of Mechanical Engineering and an affiliated faculty member in the Center for Composite Materials.

“It’s energy absorbing, tough, lightweight and impact resistant, and it has excellent vibrational and acoustic damping properties. Its unique cellular arrangement also results in good thermal properties, and it’s impermeable to moisture.”

Suhr was adviser to the lead author on the paper, James Sargianis, who completed his master’s degree in mechanical engineering at UD in May. The third member of the team was Hyung-ick Kim, a postdoctoral researcher at CCM who is an expert in mechanical characterization of advanced materials.

Sargianis’s graduate research focused on exploring natural material-based sandwich composites with enhanced noise mitigation. Cork turned out to be one of the most promising alternatives to traditional sandwich structures.

Suhr explains that composite sandwich structures — typically made from synthetic foam cores or honeycomb materials bonded to carbon-epoxy face sheets — are commonly used in aerospace applications because they offer high bending stiffness and are very lightweight. However, he says, they are also good at radiating noise, which is not a desirable feature in an airplane. The current solution is to line the interior with four to six inches of glass fabric, but this increases weight and reduces space inside the cabin.

Enter cork as the new core for the sandwich.

In the recently reported study, the researchers compared sandwich structures made from a natural cork agglomerate core with those using a core made from a high-quality synthetic foam called Rohacell. Carbon-epoxy was used as the face sheet material with both cores.

“We achieved a 250 percent improvement in damping performance using the cork-based materials, with no sacrifice in mechanical properties,” Suhr says. “Further, cork radiates little to no noise and is inexpensive. It’s also sustainable and environmentally friendly because there are no carbon emissions associated with its production.”

Since the paper was published in May, the team has been approached by Portugal-based Amorim, a world leader in the production of thermal and acoustic insulation materials based on natural raw cork.

In an email to Suhr, a company representative referred to the article as “excellent” and wrote, “We are astonished and very well surprised with such detail on your study.” A group from Amorim plans to visit UD soon to learn more about the work.

Suhr sees the potential for application of cork-based sandwich structures in not only aircraft cabins but also car engine mounts, launch vehicle fairings, and wind turbine blades.

In the next phase of the project, the team will investigate the low-velocity impact of these materials.

Sargianis, who also earned his bachelor’s degree at UD, in 2010, has accepted a position with the Naval Air Systems Command (NAVAIR) in Lakehurst, N.J. He took first-place honors at the 2012 SAMPE National Student Research Symposium in May for his work on natural material based-sandwich composites.

“It was great to work with James while he was here at UD,” Suhr says. “He knows what he’s doing, and he’s a great problem solver. I have no doubt that he will become a leader in science and technology.”

See the original story at
http://www.udel.edu/udaily/2012/jun/cork-sandwich-composites-061812.html

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>