Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein fibers can become electrical wiring

25.11.2008
Researchers at Linköping University in Sweden have succeeded in creating electrical wires consisting of protein fibers encased in plastic. The 10 nanometer thin fibers are self-organizing and compatible with biological systems.

"For the first time, we have created proteins that conduct current extremely well but can also function as semiconductors in transistors, for example," says Mahiar Hamedi, who developed the technique together with Anna Herland and associates at the Division for Biomolecular and Organic Electronics. The technology is described in his doctoral dissertation.

Last year Mahiar Hamedi made headlines with his invention of conductive textile fibers, which can be used to produce electronic cloth. Now he has scaled down that technology by a factor of about a thousand.

These nano fibers are produced in ordinary test tubes. One component is amyloid fibers, long, stable protein fibers that occur naturally in living organisms and can cause, among other things, nerve disorders in humans and animals. The other component is a conjugated polymer (PEDOT-S), a plastic material that conducts current. When the two are mixed in water, the plastic attaches to the fibers and forms a conductive shell that is merely a handful of atoms thick.

"The beauty of the self-assembly process is the ease under which PEDOT-S binds onto the amyloid fibrils directly in water without the need of any heat, and in a matter of a few minutes" Hamedi writes in his dissertation.

By providing the fibers with charged outgrowths, it is possible to get the molecules themselves to form desired structures. This can be an inexpensive and effective way to create extremely tiny three-dimensional electronic circuits.

Using their nano fibers as a channeling material, Mahiar Hamedi and his associates have constructed fully functional electrochemical transistors that work in the area of 0-0.5 volts.

The dissertation also describes a method for creating nano patterns in conductive plastic. As organic material is beginning to be used in more and more advanced electronic circuits, there is a need to fit a huge number of components in a tiny area. The solution is to form the plastic in a mold with structures that are smaller than the wavelength of visible light - and therefore invisible!

The dissertation Organic electronics on micro and nano fibers - from e-textiles to biomolecular nanoelectronics was publicly defended November 21, 2008. External examiner was George Malliaras, Cornell University, USA.

Contact:
Mahiar Hamedi, cell phone: +46 (0)734-069775, mahiar@ifm.liu.se

Åke Hjelm | idw
Further information:
http://www.vr.se

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>