Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein fibers can become electrical wiring

25.11.2008
Researchers at Linköping University in Sweden have succeeded in creating electrical wires consisting of protein fibers encased in plastic. The 10 nanometer thin fibers are self-organizing and compatible with biological systems.

"For the first time, we have created proteins that conduct current extremely well but can also function as semiconductors in transistors, for example," says Mahiar Hamedi, who developed the technique together with Anna Herland and associates at the Division for Biomolecular and Organic Electronics. The technology is described in his doctoral dissertation.

Last year Mahiar Hamedi made headlines with his invention of conductive textile fibers, which can be used to produce electronic cloth. Now he has scaled down that technology by a factor of about a thousand.

These nano fibers are produced in ordinary test tubes. One component is amyloid fibers, long, stable protein fibers that occur naturally in living organisms and can cause, among other things, nerve disorders in humans and animals. The other component is a conjugated polymer (PEDOT-S), a plastic material that conducts current. When the two are mixed in water, the plastic attaches to the fibers and forms a conductive shell that is merely a handful of atoms thick.

"The beauty of the self-assembly process is the ease under which PEDOT-S binds onto the amyloid fibrils directly in water without the need of any heat, and in a matter of a few minutes" Hamedi writes in his dissertation.

By providing the fibers with charged outgrowths, it is possible to get the molecules themselves to form desired structures. This can be an inexpensive and effective way to create extremely tiny three-dimensional electronic circuits.

Using their nano fibers as a channeling material, Mahiar Hamedi and his associates have constructed fully functional electrochemical transistors that work in the area of 0-0.5 volts.

The dissertation also describes a method for creating nano patterns in conductive plastic. As organic material is beginning to be used in more and more advanced electronic circuits, there is a need to fit a huge number of components in a tiny area. The solution is to form the plastic in a mold with structures that are smaller than the wavelength of visible light - and therefore invisible!

The dissertation Organic electronics on micro and nano fibers - from e-textiles to biomolecular nanoelectronics was publicly defended November 21, 2008. External examiner was George Malliaras, Cornell University, USA.

Contact:
Mahiar Hamedi, cell phone: +46 (0)734-069775, mahiar@ifm.liu.se

Åke Hjelm | idw
Further information:
http://www.vr.se

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>