Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-Based Coating Could Help Rehabilitate Long-Term Brain Function

01.08.2012
TAU researchers develop bioactive coating to "camouflage" neutral electrodes
Brain-computer interfaces are at the cutting edge for treatment of neurological and psychological disorder, including Parkinson's, epilepsy, and depression. Among the most promising advance is deep brain stimulation (DBS) — a method in which a silicon chip implanted under the skin ejects high frequency currents that are transferred to the brain through implanted electrodes that transmit and receive the signals. These technologies require a seamless interaction between the brain and the hardware.

But there's a catch. Identified as foreign bodies by the immune system, the brain attacks the electrodes and forms a barrier to the brain tissue, making it impossible for the electrodes to communicate with brain activity. So while the initial implantation can diminish symptoms, after a few short years or even months, the efficacy of this therapy begins to wane.

Now Aryeh Taub of Tel Aviv University's School of Psychological Sciences, along with Prof. Matti Mintz, Roni Hogri and Ari Magal of TAU's School of Psychological Sciences and Prof. Yosi Shacham-Diamand of TAU's School of Electrical Engineering, has developed a bioactive coating which not only "camouflages" the electrodes in the brain tissue, but actively suppresses the brain's immune response. By using a protein called an "interleukin (IL)-1 receptor antagonist" to coat the electrodes, the multi-disciplinary team of researchers has found a potential resolution to turn a method for short-term relief into a long-term solution. This development was reported in the Journal of Biomedical Materials Research.

Limiting the immune response

To overcome the creation of the barrier between the tissue and the electrode, the researchers sought to develop a method for placing the electrode in the brain tissue while hiding the electrode from the brain's immune defenses. Previous research groups have coated the electrodes with various proteins, says Taub, but the TAU team decided to take a different approach by using a protein that is active within the brain itself, thereby suppressing the immune reaction against the electrodes.

In the brain, the IL-1 receptor antagonist is crucial for maintaining physical stability by localizing brain damage, Taub explains. For example, if a person is hit on the head, this protein works to create scarring in specific areas instead of allowing global brain scarring. In other words, it stops the immune system from overreacting. The team's coating, the first to be developed from this particular protein, not only integrates the electrodes into the brain tissue, but allows them to contribute to normal brain functioning.

In pre-clinical studies with animal models, the researchers found that their coated electrodes perform better than both non-coated and "naïve protein"-coated electrodes that had previously been examined. Measuring the number of damaged cells at the site of implantation, researchers found no apparent difference between the site of electrode implantation and healthy brain tissue elsewhere, Taub says. In addition, evidence suggests that the coated electrodes will be able to function for long periods of time, providing a more stable and long-term treatment option.

Restoring brain function

Approximately 30,000 people worldwide are currently using deep brain stimulation (DBS) to treat neurological or psychological conditions. And DBS is only the beginning. Taub believes that, in the future, an interface with the ability to restore behavioral or motor function lost due to tissue damage is achievable — especially with the help of their new electrode coating.

"We duplicate the function of brain tissue onto a silicon chip and transfer it back to the brain," Taub says, explaining that the electrodes will pick up brain waves and transfer these directly to the chip. "The chip then does the computation that would have been done in the damaged tissue, and feeds the information back into the brain — prompting functions that would have otherwise gotten lost."

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Materials Sciences:

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>