Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-Based Coating Could Help Rehabilitate Long-Term Brain Function

01.08.2012
TAU researchers develop bioactive coating to "camouflage" neutral electrodes
Brain-computer interfaces are at the cutting edge for treatment of neurological and psychological disorder, including Parkinson's, epilepsy, and depression. Among the most promising advance is deep brain stimulation (DBS) — a method in which a silicon chip implanted under the skin ejects high frequency currents that are transferred to the brain through implanted electrodes that transmit and receive the signals. These technologies require a seamless interaction between the brain and the hardware.

But there's a catch. Identified as foreign bodies by the immune system, the brain attacks the electrodes and forms a barrier to the brain tissue, making it impossible for the electrodes to communicate with brain activity. So while the initial implantation can diminish symptoms, after a few short years or even months, the efficacy of this therapy begins to wane.

Now Aryeh Taub of Tel Aviv University's School of Psychological Sciences, along with Prof. Matti Mintz, Roni Hogri and Ari Magal of TAU's School of Psychological Sciences and Prof. Yosi Shacham-Diamand of TAU's School of Electrical Engineering, has developed a bioactive coating which not only "camouflages" the electrodes in the brain tissue, but actively suppresses the brain's immune response. By using a protein called an "interleukin (IL)-1 receptor antagonist" to coat the electrodes, the multi-disciplinary team of researchers has found a potential resolution to turn a method for short-term relief into a long-term solution. This development was reported in the Journal of Biomedical Materials Research.

Limiting the immune response

To overcome the creation of the barrier between the tissue and the electrode, the researchers sought to develop a method for placing the electrode in the brain tissue while hiding the electrode from the brain's immune defenses. Previous research groups have coated the electrodes with various proteins, says Taub, but the TAU team decided to take a different approach by using a protein that is active within the brain itself, thereby suppressing the immune reaction against the electrodes.

In the brain, the IL-1 receptor antagonist is crucial for maintaining physical stability by localizing brain damage, Taub explains. For example, if a person is hit on the head, this protein works to create scarring in specific areas instead of allowing global brain scarring. In other words, it stops the immune system from overreacting. The team's coating, the first to be developed from this particular protein, not only integrates the electrodes into the brain tissue, but allows them to contribute to normal brain functioning.

In pre-clinical studies with animal models, the researchers found that their coated electrodes perform better than both non-coated and "naïve protein"-coated electrodes that had previously been examined. Measuring the number of damaged cells at the site of implantation, researchers found no apparent difference between the site of electrode implantation and healthy brain tissue elsewhere, Taub says. In addition, evidence suggests that the coated electrodes will be able to function for long periods of time, providing a more stable and long-term treatment option.

Restoring brain function

Approximately 30,000 people worldwide are currently using deep brain stimulation (DBS) to treat neurological or psychological conditions. And DBS is only the beginning. Taub believes that, in the future, an interface with the ability to restore behavioral or motor function lost due to tissue damage is achievable — especially with the help of their new electrode coating.

"We duplicate the function of brain tissue onto a silicon chip and transfer it back to the brain," Taub says, explaining that the electrodes will pick up brain waves and transfer these directly to the chip. "The chip then does the computation that would have been done in the damaged tissue, and feeds the information back into the brain — prompting functions that would have otherwise gotten lost."

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>