Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising material for lithium-ion batteries

07.06.2013
New framework from boron and silicon could smooth the way to higher capacities

Laptops could work longer and electric cars could drive farther if it were possible to further increase the capacity of their lithium-ion batteries. The electrode material has a decisive influence on a battery’s capacity.


Lithium borosilicid framework -
Image: T. Fässler, M. Zeilinger/TUM

So far, the negative electrode typically consists of graphite, whose layers can store lithium atoms. Scientists at the Technische Universitaet Muenchen (TUM) have now developed a material made of boron and silicon that could smooth the way to systems with higher capacities.

Loading a lithium-ion battery produces lithium atoms that are taken up by the graphite layers of the negative electrode. However, the capacity of graphite is limited to one lithium atom per six carbon atoms. Silicon could take up to ten times more lithium. But unfortunately, it strongly expands during this process – which leads to unsolved problems in battery applications.

Looking for an alternative to pure silicon, scientists at the Technische Universitaet Muenchen have now synthesized a novel framework structure consisting of boron and silicon, which could serve as electrode material. Similar to the carbon atoms in diamond, the boron and silicon atoms in the novel lithium borosilicide (LiBSi2) are interconnected tetrahedrally. But unlike diamond they moreover form channels.

"Open structures with channels offer in principle the possibility to store and release lithium atoms," says Thomas Fässler, professor at the Institute of Inorganic Chemistry, Technische Universitaet Muenchen. "This is an important requirement for the application as anode material for lithium-ion batteries."

High-pressure synthesis
In the high-pressure laboratory of the Department of Chemistry and Biochemistry at Arizona State University, the scientists brought the starting materials lithium boride and silicon to reaction. At a pressure of 100,000 atmospheres and temperatures around 900 degrees Celsius, the desired lithium silicide formed. "Intuition and extended experimental experience is necessary to find out the proper ratio of starting materials as well as the correct parameters," says Thomas Fässler.

Lithium borosilicide is stable to air and moisture and withstands temperatures up to 800 ° Celsius. Next, Thomas Fässler and his graduate student Michael Zeilinger want to examine more closely how many lithium atoms the material can take up and whether it expands during charging. Because of its crystal structure the material is also expected to be very hard, which would make it attractive as a diamond substitute as well.

Since the framework structure of the lithium borosilicide is unique, Fässler and Zeilinger could give a name to their new framework. In honor of their university, they chose the name "tum."

Cooperation partners of the project were the Department of Physics at University of Augsburg and the Department of Materials and Environmental Chemistry at Stockholm University. The work was funded by the TUM Graduate School, the German Chemical Industry Fund, the German Research Foundation, the Swedish Research Council and the National Science Foundation, USA.

Publications:
Michael Zeilinger, Leo van Wüllen, Daryn Benson, Verina F. Kranak, Sumit Konar, Thomas F. Fässler, and Ulrich Häussermann, LiBSi2: A Tetrahedral Semiconductor Framework from Boron and Silicon Atoms Bearing Lithium Atoms in the Channels, Angewandte Chemie International Edition 2013, 52, 5978-5982. DOI:10.1002/anie.201301540.

Michael Zeilinger, Daryn Benson, Ulrich Häussermann, Thomas F. Fässler: Single crystal growth and thermodynamic stability of Li17Si4, Chemistry of Materials 2013, 25, 1960–1967.

Contact:
Prof. Dr. Thomas F. Faessler
Technische Universitaet Muenchen
Inorganic Chemistry with Focus on Novel Materials
Lichtenbergstr. 4, 85747 Garching, Germany
Tel.: +49 89 289 13131

Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>