Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising fire retardant results when clay nanofiller has space

08.07.2011
If materials scientists accompanied their research with theme songs, a team from the National Institute of Standards and Technology (NIST) and the University of Maryland (UMD) might be tempted to choose the garage punk song "Don't Crowd Me"* as the anthem for the promising, but still experimental nanocomposite fire retardants they are studying.

That's because the collaborators have demonstrated that the more widely and uniformly dispersed nanoscale plates of clay are in a polymer, the more fire protection the nanocomposite material provides.

Writing in the journal Polymer,** the team reports that in tests of five specimens—each with the same amount of the nanoscale filler (5 percent by weight)—the sample with the most widely dispersed clay plates was far more resistant to igniting and burning than the specimen in which the plates mostly clustered in crowds. In fact, when the two were exposed to the same amount of heat for the same length of time, the sample with the best clay dispersion degraded far more slowly. Additionally, its reduction in mass was about a third less.

In the NIST/UMD experiments, the material of interest was a polymer—a type of polystyrene, used in packaging, insulation, plastic cutlery and many other products—imbued with nanometer scale plates of montmorillonite, a type of clay with a sandwich-like molecular structure. The combination can create a material with unique properties or properties superior to those achievable by each component—clay or polymer—on its own.

Polymer-montmorillonite nanocomposites have attracted much research and commercial interest over the last decade or so. Studies have suggested that how the clay plates disperse, stack or clump in polymers dictates the properties of the resultant material. However, the evidence—especially when it comes to the flammability properties of the nanocomposites—has been somewhat muddy.

Led by NIST guest researcher Takashi Kashiwagi, the NIST-UMD team subjected their clay-dispersion-varying samples to an exhaustive battery of characterization methods and flammability tests. Affording views from the nanoscopic to the microscopic, the array of measurements and flammability tests yielded a complete picture of how the nanoscale clay plates dispersed in the polymer and how the resultant material responded when exposed to an influx of heat.

The researchers found that with better dispersion, clay plates entangle more easily when exposed to heat, thereby forming a network structure that is less likely to crack and leading to fewer gaps in the material. The result, they say, is a heat shield that slows the rate of degradation and reduces flammability. The NIST team, led by Rick Davis, is now exploring other approaches to reduce flammability, including the use of advanced materials and novel coating techniques.

* Keith Kessler, "Don't Crowd Me."

** M. Liu, X. Zhang, M. Zammarano, J.W. Gilman, R.D. Davis and T. Kashiwagi. Effect of Montmorillonite dispersion on flammability properties of poly(styrene-co-acrylonitrile) nanocomposites. Polymer. Vol. 52, Issue 14, June 22, 2011.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>