Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations

20.08.2014

Head-to-head charge configuration explains major performance issues in ferroelectrics

Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics—remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data.


Brookhaven National Laboratory

Electrostatic potential landscapes reconstructed from electron holography data with 15 volts of positive or negative current applied to the substrate (Nb-STO). The much steeper potential drop from the +15 V signifies a higher electric field, whereas the -15 V yielded a much flatter curve—indicating the charge asymmetry within the material.

Now, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered nanoscale asymmetries and charge preferences hidden within ferroelectrics that may explain their operational limits.

"The positive or negative polarizations in these ferroelectric materials should be incredibly easy to switch, but the reality is much stranger," said Brookhaven Lab physicist Myung-Geun Han, lead author on the new study. "To our surprise, opposing electronic configurations only allowed for polarization in one direction—a non-starter for reading and writing data."

The researchers used a suite of state-of-the-art techniques—including real-time electrical biasing, electron holography, and electron-beam-induced current measurements—to reveal never-before-seen electric field distributions in ferroelectric thin films, which were custom-grown at Yale University. The results, published in Nature Communications, open new pathways for ferroelectric technology.

Physics of Flipping

Most electronic devices rely on ferromagnetism to read and write data. Each so-called ferromagnetic domain contains a north or south magnetic polarity, which translates into the flipping 1 or 0 of the binary code underlying all digital information. But ferromagnetic operations not only require large electric current, but the magnets can flip each other like dominoes when packed together too tightly—effectively erasing any data.

Ferroelectrics, however, use positive or negative electric charge to render digital code. Crucially, they can be packed together with domains spanning just a few atoms and require only a tiny voltage kick to flip the charge, storing much more information with much greater efficiency.

"But ferroelectric commercialization is held up by material fatigue, sudden polarization reversal, and intrinsic charge preferences," said Brookhaven Lab physicist and study coauthor Yimei Zhu. "We suspected that the origin of these issues was in the atomic interactions along the material's interface—where the ferroelectric thin film sits on a substrate."

Interface Exploration

The scientists examined ferroelectric films of lead, zirconium, and titanium oxide grown on conductive substrates of strontium, and titanium oxide with a small amount of niobium—chosen because it exhibits large polarization values with well-defined directions, either up or down. The challenge was mapping the internal electric fields in materials thousands of times thinner than a human hair under actual operating conditions.

Brookhaven scientists hunted down the suspected interface quirks using electron holography. In this technique, a transmission electron microscope (TEM) fired 200,000-volt electron wave packets through the sample with billionth-of-a-meter precision. Negative and positive electric fields inside the ferroelectric film then attracted or repelled the electron wave and slightly changed its direction. Tracking the way the beam bent throughout the ferroelectric film revealed its hidden charges.

"Rather than an evenly distributed electric field, the bending electron waves revealed non-uniform and unidirectional electric fields that induced unstable, head-to-head domain configurations," Han said. "For the first time, we could see these unusual and jagged polarizations mapped out in real space and real time."

These opposing polarizations—like rival football teams squaring off aggressively at the line of scrimmage—surprised scientists and challenged assumptions about the ferroelectric phenomenon.

"These results were totally unexpected based on the present understanding of ferroelectrics," Han said.

The asymmetries were further confirmed by measurements of electron-beam-induced current. When a focused electron beam struck the ferroelectric sample, electric fields within the film-substrate interface revealed themselves by generating additional current. Other techniques, including piezoresponse force microscopy—in which a sub-nanometer tip induces a reaction by pressing against the ferroelectric—also confirmed the strange domains.

"Each technique demonstrated this intrinsic polarization preference, likely the origin of the back-switching and poor coding performance in these ferroelectrics," Han said. "But these domain structures should require a lot of energy and thus be very unstable. The interface effect alone cannot explain their existence."

Missing Oxygen

The scientists used another ultra-precise technique to probe the material's interface: electron energy loss spectroscopy (EELS). By measuring the energy deposited by an electron beam in specific locations—a kind of electronic fingerprint—the scientists determined the material's chemical composition.

"We suspect that more oxygen could be missing near the surface of the thin films, creating electron pockets that may neutralize positive charges at the domain walls," Han said. "This oxygen deficiency naturally forms in the material, and it could explain the stabilization of head-to-head domains."

This electron-swapping oxygen deficiency—and its negative effects on reliably storing data—might be corrected by additional engineering, Han said. For example, incorporating a "sacrificial layer" between the ferroelectric and the substrate could help block the interface interactions. In fact, the study may inspire new ferroelectrics that either exploit or overcome this unexpected charge phenomenon.

Other authors include Lijun Wu and Marvin A. Schofield of Brookhaven Lab; Matthew S. J. Marshall, Jason Hoffman, Frederick J. Walker, and Charles H. Ahn of the Yale University Department of Applied Physics and Center for Research on Interfaces Structures and Phenomena; Toshihiro Aoki of JEOL USA Inc.; and Ray Twesten of Gatan Inc.

The samples used for transmission electron microscopy (TEM) were prepared by Kim Kisslinger at Brookhaven Lab's Center for Functional Nanomaterials, a U.S. Department of Energy user facility.

The research was supported by the U.S. Department of Energy's Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Contact Information

Justin Eure
Public Affairs Representative
jeure@bnl.gov

Justin Eure | newswise
Further information:
http://www.bnl.gov/bnlweb/newsindex.html

Further reports about: Electric Energy Ferroelectric Physics Science materials polarization polarizations

More articles from Materials Sciences:

nachricht 3-D printing produces cartilage from strands of bioink
27.06.2016 | Penn State

nachricht Nanoscientists develop the 'ultimate discovery tool'
24.06.2016 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>