Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process Could Transform Manufacture of Complex Parts

22.05.2012
A Georgia Tech research team has developed a novel technology that could change how industry designs and casts complex, costly metal parts. This new casting method makes possible faster prototype development times, as well as more efficient and cost-effective manufacturing procedures after a part moves to mass production.

Suman Das, a professor in the George W. Woodruff School of Mechanical Engineering, has developed an all-digital approach that allows a part to be made directly from its computer-aided design (CAD). The project, sponsored by the Defense Advanced Research Projects Agency (DARPA), has received $4.65 million in funding.

“We have developed a proof-of-concept system which is already turning out complex metal parts, and which fundamentally transforms the way that very high-value castings are made,” said Das, who directs the Direct Digital Manufacturing Laboratory in Georgia Tech’s Manufacturing Research Center (MaRC). “We're confident that our approach can lower costs by at least 25 percent and reduce the number of unusable waste parts by more than 90 percent, while eliminating 100 percent of the tooling.”

The approach being utilized by Das and his team focuses on a technique called investment casting, also known as lost-wax casting. In this process, which dates back thousands of years, molten metal is poured into an expendable ceramic mold to form a part.

The mold is made by creating a wax replica of the part to be cast, surrounding or "investing" the replica with a ceramic slurry, and then drying the slurry and hardening it to form the mold. The wax is then melted out – or lost – to form a mold cavity into which metal can be poured and solidified to produce the casting.

Investment casting is used to create precision parts across diverse industries including aerospace, energy, biomedical and electronics. Das’s current efforts are focused on parts used in aircraft engines. He is working with turbine-engine airfoils – complex parts used in jet engines – in collaboration with the University of Michigan and PCC Airfoils.

Today, Das explained, most precision metal castings are designed on computers, using computer-aided design software. But the next step – creating the ceramic mold with which the part is cast – currently involves a sequence of six major operations requiring expensive precision-machined dies and hundreds of tooling pieces.

"The result is a costly process that typically produces many defective molds and waste parts before a useable prototype is achieved," Das said. "This trial-and-error development phase often requires many months to cast a part that is accurate enough to enter the next stage, which involves testing and evaluation."

By contrast, Das’s approach involves a device that builds ceramic molds directly from a CAD design, completing the task much faster and producing far fewer unusable parts. Called Large Area Maskless Photopolymerization (LAMP), this high-resolution digital process accretes the mold layer by layer by projecting bitmaps of ultraviolet light onto a mixture of photosensitive resin and ceramic particles, and then selectively curing the mixture to a solid.

The technique places one 100-micron layer on top of another until the structure is complete. After the mold is formed, the cured resin is removed through binder burnout and the remaining ceramic is sintered in a furnace. The result is a fully ceramic structure into which molten metal – such as nickel-based superalloys or titanium-based alloys – are poured, producing a highly accurate casting.

“The LAMP process lowers the time required to turn a CAD design into a test-worthy part from a year to about a week,” Das said. “We eliminate the scrap and the tooling, and each digitally manufactured mold is identical to the others.”

A prototype LAMP alpha machine is currently building six typical turbine-engine airfoil molds in six hours. Das predicts that a larger beta machine – currently being built at Georgia Tech and scheduled for installation at a PCC Airfoils facility in Ohio in 2012 – will produce 100 molds at a time in about 24 hours.

Although the current work focuses on turbine-engine airfoils, Das believes the LAMP technique will be effective in the production of many types of intricate metal parts. He envisions a scenario in which companies could send out part designs to digital foundries and receive test castings within a short time, much as integrated-circuit designers send CAD plans to chip foundries today.

Moreover, he said, direct digital manufacturing enabled by LAMP should allow designers to create increasingly sophisticated pieces capable of achieving greater efficiency in jet engines and other systems.

“This process can produce parts of a complexity that designers could only dream of before,” he said. “The digital technique takes advantage of high-resolution optics and precision motion systems to achieve extremely sharp, small features – on the order of 100 microns.”

Das also noted that the new process not only creates testable prototypes but could also be used in the actual manufacturing process. That would allow more rapid production of complex metal parts, in both low and high volumes, at lower costs in a variety of industries.

“When you can produce desired volumes in a short period without tooling,” he said, “you have gone beyond rapid prototyping to true rapid manufacturing.”

The project depicted in this article is sponsored by the Defense Advanced Research Projects Agency; the content of this article does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: John Toon (404-894-6986)(jtoon@gatech.edu) or Abby Robinson (404-385-3364)(abby@innovate.gatech.edu).

Writer: Rick Robinson

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>