Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing in the hobby room: paper- thin and touch-sensitive displays on various materials

07.10.2014

Until now, if you want to print a greeting card for a loved one, you can use colorful graphics, fancy typefaces or special paper to enhance it. But what if you could integrate paper-thin displays into the cards, which could be printed at home and which would be able to depict self-created symbols or even react to touch?

Those only some of the options computer scientists in Saarbrücken can offer. They developed an approach that in the future will enable laypeople to print displays in any desired shape on various materials and therefore could change everyday life completely.


Paper- thin and touch-sensitive displays on various materials

Saarland University


Displays on various materials

Saarland University

For example: A postcard depicts an antique car. If you press a button, the back axle and the steering wheel rim light up in the same color. Two segments on a flexible display, which have the same shape as those parts of the car, can realize this effect. Computer scientists working with Jürgen Steimle printed the post card using an off-the-shelf inkjet printer. It is electro-luminescent: If it is connected to electric voltage, it emits light. This effect is also used to light car dashboards at night.

Steimle is leader of the research group “Embodied Interaction” at the Cluster of Excellence “Multimodal Computing and Interaction”. Simon Olberding is one of his researchers. “Until now, this was not possible”, explains Olberding.

“Displays were mass-produced, they were inflexible, they always had a rectangular shape.” Olberding and Steimle want to change that. The process they developed works as follows: The user designs a digital template with programs like Microsoft Word or Powerpoint for the display he wants to create. By using the methods the computer scientists from Saarbrücken developed, called “Screen Printing” and “Conductive Inkjet Printing”, the user can print those templates.

Both approaches have strengths and weaknesses, but a single person can use them within either a few minutes or two to four hours. The printing results are relatively high-resolution displays with a thickness of only 0.1 millimeters. It costs around €20 to print on a DIN A4 page; the most expensive part is the special ink.

Since the method can be used to print on materials like paper, synthetic material, leather, pottery, stone, metal and even wood, two-dimensional and even three-dimensional shapes can be realized. Their depiction can either consist of one segment (surface, shape, pattern, raster graphics), several segments or variously built-up matrixes. “We can even print touch-sensitive displays”, says Olberding.

The possibilities for the user are various: displays can be integrated into almost every object in daily life – users can print not only on paper objects, but also on furniture or decorative accessories, bags or wearable items. For example, the strap of a wristwatch could be upgraded so that it lights up if a text message is received. “If we combine our approach with 3D printing, we can print three-dimensional objects that display information and are touch-sensitive”, explains Steimle.

Background information about computer science research at Saarland University

The Department of Computer Science represents the center of computer science research in Saarbrücken, Germany. Seven other internationally renowned research institutes are nearby: The Max Planck Institutes for Informatics and for Software Systems, the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the Center for IT Security, Privacy and Accountability (CISPA), and the Cluster of Excellence “Multimodal Computing and Interaction”.

Press requests:
Dr. Jürgen Steimle
Cluster of Excellence “Multimodal Computing and Interaction”
Mail: jsteimle@mmci.uni-saarland.de
Phone: +49 681 302-71935

Simon Olberding
Cluster of Excellence “Multimodal Computing and Interaction”
Mail: solberding@mmci.uni-saarland.de
Phone: +49 681 302-71937

Editor:
Gordon Bolduan
Science Communication
Cluster of Excellence on “Multimodal Computing and Interaction”
Mail: bolduan@mmci.uni-saarland.de
Tel.: +49 (0)681/302-70741

Weitere Informationen:

http://embodied.mpi-inf.mpg.de/research/printscreen/
http://www.uni-saarland.de/pressefotos
http://youtu.be/LiD7dnqY034

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>