Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton scientists find unusual electrons that go with the flow

15.07.2010
On a quest to discover new states of matter, a team of Princeton University scientists has found that electrons on the surface of specific materials act like miniature superheroes, relentlessly dodging the cliff-like obstacles of imperfect microsurfaces, sometimes moving straight through barriers.

The Princeton work represents the first time such behavior of electrons has been tracked and recorded, and hints at the possibilities of speeding up integrated circuits that process information by flow of electrons between different devices. The new materials potentially could break the bottleneck that occurs when metallic interconnects get so small that even the tiniest atomic imperfection hinders their performance.

Physics professor Ali Yazdani and his team observed the extraordinary physics behavior in a "topological surface state" on a microscopic wedge of the metal antimony. The work is reported in the July 15 issue of Nature.

Normally, electron flow in materials is impeded by imperfections -- seemingly slight edges and rifts act like cliffs and crevasses in this microscopic world, blocking electrons in their path. Recent theories, however, predict that electrons on the surface of some compounds containing elements such as antimony can be immune to such disruptions in their flow. The connectivity in their flow, Yazdani said, stems from a special form of electron wave that seemingly alters the pattern of flow around any imperfection.

Princeton Professor Ali Yazdani has led a team that has found electrons acting in unusual ways on the surfaces of specific materials. The work represents the first time such behavior of electrons has been tracked and recorded, and hints at the possibilities of speeding up integrated circuits.

Many of the "topological" materials, such as antimony, have been important in the world economy; however, their unusual surface conduction previously had not been examined. Part of the challenge had been the difficulty in measuring the flow of electrons just at the surface, a task that was accomplished by the Princeton group using a specialized microscopy technique that enables precise visualization of electrons at the surface of materials.

"Material imperfections just cannot trap these surface electrons," said Yazdani, whose pioneering explorations of the behavior of electrons in unusual materials in his Jadwin Hall laboratories has consistently yielded new insights. "This demonstration suggests that surface conduction in these compounds may be useful for high-current transmission even in the presence of atomic scale irregularities -- an electronic feature sought to efficiently interconnect nanoscale devices."

An electron is a subatomic particle that carries a negative electric charge. It orbits an atom's nucleus and is bound to it by electromagnetic forces. Electrons can hop between atoms in a limited number of materials, such as crystals, and move freely in their interior or on the surface.

These free electrons are responsible for the generation of electric current, playing a central role in numerous applications related to industry, science and medicine, including providing the current for modern electronic devices. For most metals, electrons in the interior carry most of the electrical current, with the electrons at the surface being only weakly mobile.

At a given temperature, materials possess a measurable conductivity that determines the intensity of electric current. Metals such as copper and gold are good conductors, allowing for the rapid flow of electrons. Materials such as glass and Teflon, with structures that impede electron flow, are poor conductors. The atoms of metals have a structure allowing their electrons to behave as if they were free, or not bound to the atom.

The work by the Princeton team is part of an ongoing inquiry into materials called topological insulators -- substances that act as insulators in their interior while permitting the movement of charges on their boundary. In a phenomenon known as the quantum Hall effect, this behavior occurs when there is a perpendicular magnetic field applied to the material. And, in work conducted internationally by several researchers -- including a group led by Princeton physics professor Zahid Hasan -- a new type of topological insulator has been uncovered in which this behavior occurs even when there is no magnetic field present.

The crystals for the work were grown in the laboratory of Robert Cava, the Russell Wellman Moore Professor of Chemistry at Princeton.

The antimony crystal used in the experiment led by Yazdani is a metal but shares the unusual surface electron characteristics with related insulating compounds.

Because the electrons are able to move freely on the surface of the experimental material regardless of the shape of that surface, the material has a "topological surface state," Yazdani said. Topology is a major area of mathematics concerned with spatial properties that are preserved despite the deformation, like stretching, of objects. In that regard, a doughnut and a coffee cup can be viewed as topologically the same because they both are essentially areas with holes in the middle.

With lab instruments, the team was able to measure how long electrons are staying in a region of the material and how many of them flow through to other areas. The results showed a surprising efficiency by which surface electrons on antimony go through barriers that typically stop other surface electrons on the surface of most conducting materials, such as copper.

Authors on the paper include: Yazdani; postdoctoral fellows Jungpil Seo and Haim Beidenkopf; graduate student Pedram Roushan; and, along with Cava, his former postdoctoral fellow Yew San Hor, who is now at the Missouri University of Science and Technology.

Yazdani's team worked in the specially designed Princeton Nanoscale Microscopy Laboratory, where highly accurate measurements at the atomic scale are possible because sounds and vibrations, through a multitude of technologies, are kept to a minimum. They used a powerful scanning tunneling microscope to view electrons on the surface of the antimony sample.

In such a microscope, an image is produced by pointing a finely focused electron beam, as in a TV set, across the studied sample. Researchers gently scan the microcope's single-atom sharp metal tip just above the surface of the material being studied. By monitoring the quantum "tunneling" of electrons flowing from the needle into the sample, the instrument can produce precise images of atoms, as well as the flow of electron waves.

The experiment, Cava said, "shows for the first time that the theoretically predicted immunity of topological surface states to death at the hands of the ever-present defects in the atomic arrangements on crystal surfaces is really true."

The research primarily was funded by the National Science Foundation through the agency's support of the Princeton Center for Complex Materials. In addition, the U.S. Army Research Office, the Office of Naval Research, the U.S. Department of Energy and the W. M. Keck Foundation contributed through support of the instrumentation and infrastructure at the Princeton Nanoscale Microscopy Laboratory.

Kitta MacPherson | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>