Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pressurized Vascular Systems for Self-healing Materials

30.09.2011
Artificial microvascular systems for self-repair of materials damage, such as cracks in a coating applied to a building or bridge, have relied on capillary force for transport of the healing agents.

Now, researchers at the Beckman Institute have demonstrated that an active pumping capability for pressurized delivery of liquid healing agents in microvascular systems significantly improves the degree of healing compared with capillary force methods.

In a paper for the Royal Society journal Interface, Nancy Sottos, Scott White, and former graduate student Andrew Hamilton report on their investigation into using an active pumping method for microvascular systems in a paper titled Pressurized vascular systems for self-healing materials. Their inspiration, they write, comes from the fact that nature in its wisdom gives that ability to many biological systems: “Fluid flow in these natural vascular systems is typically driven by a pressure gradient induced by the pumping action of a heart, even in primitive invertebrates such as earthworms.”

Sottos and White, faculty in the College of Engineering at the University of Illinois, and their fellow collaborators from Beckman’s Autonomous Materials Systems (AMS) group, have developed different methods for self-healing, including microvascular systems for self-repair of polymers. The vascular system works when reactive fluids are released in response to stress, enabling polymerization that restores mechanical integrity.

For this project, Sottos, White, and Hamilton sought to determine the effectiveness of an active pumping mechanism in a microvascular system because, they wrote, relying on capillary flow to disperse the healing agents “limits the size of healable damage” and because “unpressurized delivery of healing agents requires diffusional mixing – a relatively slow and highly localized process for typical resin-hardener systems – to occur for the healing reaction to initiate.”

To achieve active pumping the researchers experimented with an external “pump” composed of two computer-controlled pressure boxes that allowed for more precise control over flow. The healing agents in the pump were fed into two parallel microchannels.

The results of using active pumping to deliver healing agents from external reservoirs showed that “a damage volume larger than the total vascular volume was effectively filled and healed. Employing pressure-driven flow removes the reliance upon capillary forces and, in the cases of dynamic pumping, mixing of the two healing agents in the damaged region was enhanced.”

The improved mixing of the reactive agents results in “the formation of consistently tougher healed material over the course of numerous damage-heal cycles when compared with the alternative strategy of employing a dense spatial distribution of vascular features to achieve mixing via diffusion alone, resulting in inferior mechanical recovery.”

The method reported on in the paper relied on the most effective healing technique for microvascular systems (two separated liquid-phase components that react upon contact following release caused by damage), while the use of an external, actively-controlled pump to deliver the healing agents to the damaged region “removed the constraints of limited healing agent supply.”

They found that active pumping improves the degree of mechanical recovery, and that a continuous flow of healing agents from dynamic pumping extends the repeatability of the self-healing response.

“Significant improvements,” they write, “are achieved in the degree of healing and the number of healing events possible, compared with prior passive schemes that utilize only capillary forces for the delivery of healing agents.”

Sottos said the study was a first step toward integrating active pumping into microvascular systems. Earlier this year Sottos, White, and fellow AMS member Jeff Moore reported on a method for microvascular systems that uses structural composites reinforced with fibers that, when heated, vaporize, leaving tiny channels with multiple functionalities.

“This set-up could be used with any microvascular network, including the structural composites reported on recently,” Sottos said. “In future materials, it would be ideal to have the pumping integrated in the materials itself.

“The advance of this paper is the study of active pumping/mixing for healing. We haven't applied this to healing with the structural composites yet; the present study was essential to understand what happens when we pump the healing agents.”

Sue Johnson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>