Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Precision measurement of metallic foils during production

The Fraunhofer Institute for Laser Technology ILT is unveiling its new “bd-2” sensor for thickness measurements.

Within a measurement range of several millimeters, the system can accurately measure foils, rolled strips and other metallic semi-finished products with a precision better than 100 nm. The small sensor head coupled with high-speed data processing facilitates inline measurements in the production line.

The new “bd-2” thickness measurement system based on bidirectional sensors.
Picture Source: Fraunhofer ILT, Aachen

Measurement under rough ambient conditions.
Picture Source: Fraunhofer ILT, Aachen

Materials and quality control must meet increasingly stringent requirements in the aerospace and automotive industries. To provide thickness measurement, for instance, sensors must now be accurate down to the micrometer range yet nonetheless operate in the production line as fast as possible and with minimal maintenance.

The innovative optical thickness measurement system “bd-2” (for bidirectional measurements) was developed at Fraunhofer ILT to meet these requirements. The technology is based on the interference properties of semiconductor laser sources. A measuring beam is projected onto the material surface and the reflected signal allows the distance to be measured with a precision of 100 nm. Multiple layers can be measured simultaneously in the case of semitransparent materials.

This system was developed specifically for metalworking to measure the thickness of rolled strips and metallic foils. The thickness measurement system “bd-2” comprises two sensing heads mounted in a C-frame to measure the thickness of the product passing by.

“bd-2” is suited to measure the thickness of rolled strips, metallic sheets and foils in the range of 10 µm to 10 mm. Both matt and high-glossy surfaces can be measured reliably.

A new sensing head simplifies the entire measurement process
Compared with established methods such as laser triangulation, the new process offers several advantages: since irradiated and reflected beams are propagating along the same line, alignment efforts are eliminated as transmitter and receiver no longer have to be adjusted to each other. It also requires less space than solutions such as triangulation: the sensing head transmits and receives its measuring beam through a small window just 2 mm in diameter and is reliably protected against contamination even in the harshest environments by using an air stream. Compared with conventional triangulation sensors, the new sensor by far outperforms its rivals when it comes to linearity error.

Control processes reliably at 210 km/h

Although it offers the accuracy of interferometric methods, the new sensor “bd-2” is much faster than established distance sensors that provide absolute measurements. The complete system processes up to 70,000 distance measurements per second. As part of initial practical tests, moving objects were measured reliably at a speed of 3.5 km/min, equivalent to 210 km/h. As such, inline measurements are possible even at high production speeds, thus enabling fast feedback loops to control and optimize production processes.

Sensor sets new standards for industrial manufacturing

In terms of speed and integrability, “bd-2” sets new standards for process control and quality assurance in various industry segments.

The process paves the way for the transition from laboratory-based individual measurement to continuous inline production control. This is why the Fraunhofer ILT experts are targeting industry customers looking to meet higher accuracy requirements in series production, offering them not just complete systems but also extensive consulting in relation to process integration. The sensors were tested extensively in pilot plant operation; first industry partners will be rolling out the new technology in June 2013.

Under the slogan “inspired to measure”, the interferometric thickness sensor will be showcased at this year’s CONTROL in Stuttgart on the Fraunhofer booth 1502 in Hall 1.


Dr. Stefan Hölters MBA
Head of the Clinical Diagnostics and Microsurgical Systems Group
Phone +49 241 8906-436
PD Dr. Reinhard Noll
Head of the Measurement Technology and EUV Sources Competence Area
Phone +49 241 8906-138

Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen, Germany
Phone +49 241 8906-0
Fax +49 241 8906-121

Petra Nolis | Fraunhofer-Institut
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>