Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision measurement of metallic foils during production

08.05.2013
The Fraunhofer Institute for Laser Technology ILT is unveiling its new “bd-2” sensor for thickness measurements.

Within a measurement range of several millimeters, the system can accurately measure foils, rolled strips and other metallic semi-finished products with a precision better than 100 nm. The small sensor head coupled with high-speed data processing facilitates inline measurements in the production line.


The new “bd-2” thickness measurement system based on bidirectional sensors.
Picture Source: Fraunhofer ILT, Aachen


Measurement under rough ambient conditions.
Picture Source: Fraunhofer ILT, Aachen

Materials and quality control must meet increasingly stringent requirements in the aerospace and automotive industries. To provide thickness measurement, for instance, sensors must now be accurate down to the micrometer range yet nonetheless operate in the production line as fast as possible and with minimal maintenance.

The innovative optical thickness measurement system “bd-2” (for bidirectional measurements) was developed at Fraunhofer ILT to meet these requirements. The technology is based on the interference properties of semiconductor laser sources. A measuring beam is projected onto the material surface and the reflected signal allows the distance to be measured with a precision of 100 nm. Multiple layers can be measured simultaneously in the case of semitransparent materials.

This system was developed specifically for metalworking to measure the thickness of rolled strips and metallic foils. The thickness measurement system “bd-2” comprises two sensing heads mounted in a C-frame to measure the thickness of the product passing by.

“bd-2” is suited to measure the thickness of rolled strips, metallic sheets and foils in the range of 10 µm to 10 mm. Both matt and high-glossy surfaces can be measured reliably.

A new sensing head simplifies the entire measurement process
Compared with established methods such as laser triangulation, the new process offers several advantages: since irradiated and reflected beams are propagating along the same line, alignment efforts are eliminated as transmitter and receiver no longer have to be adjusted to each other. It also requires less space than solutions such as triangulation: the sensing head transmits and receives its measuring beam through a small window just 2 mm in diameter and is reliably protected against contamination even in the harshest environments by using an air stream. Compared with conventional triangulation sensors, the new sensor by far outperforms its rivals when it comes to linearity error.

Control processes reliably at 210 km/h

Although it offers the accuracy of interferometric methods, the new sensor “bd-2” is much faster than established distance sensors that provide absolute measurements. The complete system processes up to 70,000 distance measurements per second. As part of initial practical tests, moving objects were measured reliably at a speed of 3.5 km/min, equivalent to 210 km/h. As such, inline measurements are possible even at high production speeds, thus enabling fast feedback loops to control and optimize production processes.

Sensor sets new standards for industrial manufacturing

In terms of speed and integrability, “bd-2” sets new standards for process control and quality assurance in various industry segments.

The process paves the way for the transition from laboratory-based individual measurement to continuous inline production control. This is why the Fraunhofer ILT experts are targeting industry customers looking to meet higher accuracy requirements in series production, offering them not just complete systems but also extensive consulting in relation to process integration. The sensors were tested extensively in pilot plant operation; first industry partners will be rolling out the new technology in June 2013.

Under the slogan “inspired to measure”, the interferometric thickness sensor will be showcased at this year’s CONTROL in Stuttgart on the Fraunhofer booth 1502 in Hall 1.

Contacts

Dr. Stefan Hölters MBA
Head of the Clinical Diagnostics and Microsurgical Systems Group
Phone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de
PD Dr. Reinhard Noll
Head of the Measurement Technology and EUV Sources Competence Area
Phone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen, Germany
Phone +49 241 8906-0
Fax +49 241 8906-121

Petra Nolis | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>