Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision measurement of metallic foils during production

08.05.2013
The Fraunhofer Institute for Laser Technology ILT is unveiling its new “bd-2” sensor for thickness measurements.

Within a measurement range of several millimeters, the system can accurately measure foils, rolled strips and other metallic semi-finished products with a precision better than 100 nm. The small sensor head coupled with high-speed data processing facilitates inline measurements in the production line.


The new “bd-2” thickness measurement system based on bidirectional sensors.
Picture Source: Fraunhofer ILT, Aachen


Measurement under rough ambient conditions.
Picture Source: Fraunhofer ILT, Aachen

Materials and quality control must meet increasingly stringent requirements in the aerospace and automotive industries. To provide thickness measurement, for instance, sensors must now be accurate down to the micrometer range yet nonetheless operate in the production line as fast as possible and with minimal maintenance.

The innovative optical thickness measurement system “bd-2” (for bidirectional measurements) was developed at Fraunhofer ILT to meet these requirements. The technology is based on the interference properties of semiconductor laser sources. A measuring beam is projected onto the material surface and the reflected signal allows the distance to be measured with a precision of 100 nm. Multiple layers can be measured simultaneously in the case of semitransparent materials.

This system was developed specifically for metalworking to measure the thickness of rolled strips and metallic foils. The thickness measurement system “bd-2” comprises two sensing heads mounted in a C-frame to measure the thickness of the product passing by.

“bd-2” is suited to measure the thickness of rolled strips, metallic sheets and foils in the range of 10 µm to 10 mm. Both matt and high-glossy surfaces can be measured reliably.

A new sensing head simplifies the entire measurement process
Compared with established methods such as laser triangulation, the new process offers several advantages: since irradiated and reflected beams are propagating along the same line, alignment efforts are eliminated as transmitter and receiver no longer have to be adjusted to each other. It also requires less space than solutions such as triangulation: the sensing head transmits and receives its measuring beam through a small window just 2 mm in diameter and is reliably protected against contamination even in the harshest environments by using an air stream. Compared with conventional triangulation sensors, the new sensor by far outperforms its rivals when it comes to linearity error.

Control processes reliably at 210 km/h

Although it offers the accuracy of interferometric methods, the new sensor “bd-2” is much faster than established distance sensors that provide absolute measurements. The complete system processes up to 70,000 distance measurements per second. As part of initial practical tests, moving objects were measured reliably at a speed of 3.5 km/min, equivalent to 210 km/h. As such, inline measurements are possible even at high production speeds, thus enabling fast feedback loops to control and optimize production processes.

Sensor sets new standards for industrial manufacturing

In terms of speed and integrability, “bd-2” sets new standards for process control and quality assurance in various industry segments.

The process paves the way for the transition from laboratory-based individual measurement to continuous inline production control. This is why the Fraunhofer ILT experts are targeting industry customers looking to meet higher accuracy requirements in series production, offering them not just complete systems but also extensive consulting in relation to process integration. The sensors were tested extensively in pilot plant operation; first industry partners will be rolling out the new technology in June 2013.

Under the slogan “inspired to measure”, the interferometric thickness sensor will be showcased at this year’s CONTROL in Stuttgart on the Fraunhofer booth 1502 in Hall 1.

Contacts

Dr. Stefan Hölters MBA
Head of the Clinical Diagnostics and Microsurgical Systems Group
Phone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de
PD Dr. Reinhard Noll
Head of the Measurement Technology and EUV Sources Competence Area
Phone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen, Germany
Phone +49 241 8906-0
Fax +49 241 8906-121

Petra Nolis | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>