Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision measurement of metallic foils during production

08.05.2013
The Fraunhofer Institute for Laser Technology ILT is unveiling its new “bd-2” sensor for thickness measurements.

Within a measurement range of several millimeters, the system can accurately measure foils, rolled strips and other metallic semi-finished products with a precision better than 100 nm. The small sensor head coupled with high-speed data processing facilitates inline measurements in the production line.


The new “bd-2” thickness measurement system based on bidirectional sensors.
Picture Source: Fraunhofer ILT, Aachen


Measurement under rough ambient conditions.
Picture Source: Fraunhofer ILT, Aachen

Materials and quality control must meet increasingly stringent requirements in the aerospace and automotive industries. To provide thickness measurement, for instance, sensors must now be accurate down to the micrometer range yet nonetheless operate in the production line as fast as possible and with minimal maintenance.

The innovative optical thickness measurement system “bd-2” (for bidirectional measurements) was developed at Fraunhofer ILT to meet these requirements. The technology is based on the interference properties of semiconductor laser sources. A measuring beam is projected onto the material surface and the reflected signal allows the distance to be measured with a precision of 100 nm. Multiple layers can be measured simultaneously in the case of semitransparent materials.

This system was developed specifically for metalworking to measure the thickness of rolled strips and metallic foils. The thickness measurement system “bd-2” comprises two sensing heads mounted in a C-frame to measure the thickness of the product passing by.

“bd-2” is suited to measure the thickness of rolled strips, metallic sheets and foils in the range of 10 µm to 10 mm. Both matt and high-glossy surfaces can be measured reliably.

A new sensing head simplifies the entire measurement process
Compared with established methods such as laser triangulation, the new process offers several advantages: since irradiated and reflected beams are propagating along the same line, alignment efforts are eliminated as transmitter and receiver no longer have to be adjusted to each other. It also requires less space than solutions such as triangulation: the sensing head transmits and receives its measuring beam through a small window just 2 mm in diameter and is reliably protected against contamination even in the harshest environments by using an air stream. Compared with conventional triangulation sensors, the new sensor by far outperforms its rivals when it comes to linearity error.

Control processes reliably at 210 km/h

Although it offers the accuracy of interferometric methods, the new sensor “bd-2” is much faster than established distance sensors that provide absolute measurements. The complete system processes up to 70,000 distance measurements per second. As part of initial practical tests, moving objects were measured reliably at a speed of 3.5 km/min, equivalent to 210 km/h. As such, inline measurements are possible even at high production speeds, thus enabling fast feedback loops to control and optimize production processes.

Sensor sets new standards for industrial manufacturing

In terms of speed and integrability, “bd-2” sets new standards for process control and quality assurance in various industry segments.

The process paves the way for the transition from laboratory-based individual measurement to continuous inline production control. This is why the Fraunhofer ILT experts are targeting industry customers looking to meet higher accuracy requirements in series production, offering them not just complete systems but also extensive consulting in relation to process integration. The sensors were tested extensively in pilot plant operation; first industry partners will be rolling out the new technology in June 2013.

Under the slogan “inspired to measure”, the interferometric thickness sensor will be showcased at this year’s CONTROL in Stuttgart on the Fraunhofer booth 1502 in Hall 1.

Contacts

Dr. Stefan Hölters MBA
Head of the Clinical Diagnostics and Microsurgical Systems Group
Phone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de
PD Dr. Reinhard Noll
Head of the Measurement Technology and EUV Sources Competence Area
Phone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen, Germany
Phone +49 241 8906-0
Fax +49 241 8906-121

Petra Nolis | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>