Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prêt-a-sauver fashion for disasters

22.10.2008
European researchers are helping rescue workers and disaster victims by creating innovative clothing from smart fabrics. The clothes can monitor people’s health, identify their location and even detect dangerous chemicals in the atmosphere.

Fire fighters, paramedics and rescue workers could soon carry a new weapon into the danger zones with European researchers completing work on smart clothing for disasters.

Smart clothing incorporates technology and microelectronics to perform a wide variety of functions, from communication to health monitoring. It is an important emerging field, with the market thought to be worth over €300m with current growth rates about 20 percent a year, according to reports from the Smartfabrics Conference 2006.

Europe is one of the world’s leaders in the area and that leadership will be maintained through the smart clothing research undertaken by the Proetex project.

“Proetex arose from partner inputs and from emergency teams like fire fighters and civil protection units,” explains Annalisa Bonfiglio, coordinator of the Proetex project.

“Gradually, we arrived at the awareness that technical garments for improving safety were especially needed in the field of emergency work and we decided to start a common effort towards this goal.”

The Proetex project is an ideal test case for smart clothing for a variety of reasons. It responds to an immediate need: better equipment improves the safety and effectiveness of disaster response.

Rescue workers are often laden with equipment, whether it is oxygen or medical equipment, so any additional gear they use must be as light as possible and low power consuming.

Smart strength

Fortunately, this is the very strength of smart clothing. With microelectronics incorporated into the garment, or even into the very weave, designers can minimise on bulk while maximising the benefits.

The complete Proetex package consists of a raft of sensors incorporated into different elements of the overall system: vest, jacket, shoes and a belt for victims.

The inner garment includes sensors that provide continuous monitoring of life-signs like breathing, cardiac rhythm and body temperature. The outer garment (jacket) detects external threats like high temperatures and toxic chemicals. The first warns rescue command of local conditions, while the second can alert the rescue worker to dangerous gases.

The jacket incorporates accelerometers to track the wearer’s motion and position and GPS to track location. Integrated light and sound alerts can be activated to make finding a lost or injured fire fighter easier. The jacket also has GPS and a textile antenna. A small box of electronic controls manages all the data from various sensors. Finally, textile batteries are also included to provide a light power source.

The fire fighter boots developed by Proetex are ergonomically designed and include a pocket for a gas sensor, but researchers hope that later models will include batteries, more sensors and communication devices.

Safety and efficiency

“Monitoring rescuers and fire fighters during emergency operations is especially important, not only because they risk their own lives, but also for improving their efficiency,” according to project information.

“For instance, being able to locate a large number of rescuers across a large area using an efficient, portable telecommunication system embedded in normal garments is already an important means for improving coordination of the rescue operations.”

The project is in the second of three phases and later versions of the system could integrate biosensors to monitor sweat, dehydration, electrolytes, stress indicators, oxygen and carbon dioxide. The system can also monitor the wearer’s pose, indicating whether the person is lying down or standing.

Challenging technology integration

“This project is especially challenging for the integration of many different technologies on a common ‘platform’, in this case the garment,” reveals Bonfiglio. “My research field, textile applications for plastic electronics, is extremely interesting … The mechanical properties of textiles (for example flexibility) are very similar to those of the polymers used in plastic electronics.”

There is more research to come and the project partners are looking into potential commercial opportunities, reveals Bonfiglio.

But the effects of this Sixth Framework Programme-funded project will extend further than the emergency services or even the market. Not only are the results useful in themselves, this research tackles many of the fundamental problems that affect smart clothing regardless of sector, namely reliability, effectiveness and comfort.

This is part three of the three-part special feature in October on smart textiles (see related articles).

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90102

Further reports about: GPS Proetex Prêt-a-sauver Smart clothing Smart fabrics

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>