Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prêt-a-sauver fashion for disasters

22.10.2008
European researchers are helping rescue workers and disaster victims by creating innovative clothing from smart fabrics. The clothes can monitor people’s health, identify their location and even detect dangerous chemicals in the atmosphere.

Fire fighters, paramedics and rescue workers could soon carry a new weapon into the danger zones with European researchers completing work on smart clothing for disasters.

Smart clothing incorporates technology and microelectronics to perform a wide variety of functions, from communication to health monitoring. It is an important emerging field, with the market thought to be worth over €300m with current growth rates about 20 percent a year, according to reports from the Smartfabrics Conference 2006.

Europe is one of the world’s leaders in the area and that leadership will be maintained through the smart clothing research undertaken by the Proetex project.

“Proetex arose from partner inputs and from emergency teams like fire fighters and civil protection units,” explains Annalisa Bonfiglio, coordinator of the Proetex project.

“Gradually, we arrived at the awareness that technical garments for improving safety were especially needed in the field of emergency work and we decided to start a common effort towards this goal.”

The Proetex project is an ideal test case for smart clothing for a variety of reasons. It responds to an immediate need: better equipment improves the safety and effectiveness of disaster response.

Rescue workers are often laden with equipment, whether it is oxygen or medical equipment, so any additional gear they use must be as light as possible and low power consuming.

Smart strength

Fortunately, this is the very strength of smart clothing. With microelectronics incorporated into the garment, or even into the very weave, designers can minimise on bulk while maximising the benefits.

The complete Proetex package consists of a raft of sensors incorporated into different elements of the overall system: vest, jacket, shoes and a belt for victims.

The inner garment includes sensors that provide continuous monitoring of life-signs like breathing, cardiac rhythm and body temperature. The outer garment (jacket) detects external threats like high temperatures and toxic chemicals. The first warns rescue command of local conditions, while the second can alert the rescue worker to dangerous gases.

The jacket incorporates accelerometers to track the wearer’s motion and position and GPS to track location. Integrated light and sound alerts can be activated to make finding a lost or injured fire fighter easier. The jacket also has GPS and a textile antenna. A small box of electronic controls manages all the data from various sensors. Finally, textile batteries are also included to provide a light power source.

The fire fighter boots developed by Proetex are ergonomically designed and include a pocket for a gas sensor, but researchers hope that later models will include batteries, more sensors and communication devices.

Safety and efficiency

“Monitoring rescuers and fire fighters during emergency operations is especially important, not only because they risk their own lives, but also for improving their efficiency,” according to project information.

“For instance, being able to locate a large number of rescuers across a large area using an efficient, portable telecommunication system embedded in normal garments is already an important means for improving coordination of the rescue operations.”

The project is in the second of three phases and later versions of the system could integrate biosensors to monitor sweat, dehydration, electrolytes, stress indicators, oxygen and carbon dioxide. The system can also monitor the wearer’s pose, indicating whether the person is lying down or standing.

Challenging technology integration

“This project is especially challenging for the integration of many different technologies on a common ‘platform’, in this case the garment,” reveals Bonfiglio. “My research field, textile applications for plastic electronics, is extremely interesting … The mechanical properties of textiles (for example flexibility) are very similar to those of the polymers used in plastic electronics.”

There is more research to come and the project partners are looking into potential commercial opportunities, reveals Bonfiglio.

But the effects of this Sixth Framework Programme-funded project will extend further than the emergency services or even the market. Not only are the results useful in themselves, this research tackles many of the fundamental problems that affect smart clothing regardless of sector, namely reliability, effectiveness and comfort.

This is part three of the three-part special feature in October on smart textiles (see related articles).

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90102

Further reports about: GPS Proetex Prêt-a-sauver Smart clothing Smart fabrics

More articles from Materials Sciences:

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

nachricht Silk could improve sensitivity, flexibility of wearable body sensors
21.08.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>