Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymers: One stone, two birds

17.11.2011
A single polymer can be used to fabricate both thin-film transistors and solar cells

Polymers are the material of choice for making thin-film transistors and solar cells. They are also potentially suitable for manufacture using economical, high-throughput techniques, such as roll-to-roll and inkjet printing processes. However, transistors and solar cells have traditionally used different kinds of polymers, and this can severely complicate the fabrication process. Zhi-Kuan Chen at the A*STAR Institute of Materials Research and Engineering and co-workers have now developed a versatile polymer that is suitable for both kinds of devices.

Polymers with high-charge mobilities are ideal to use in the manufacture of transistors. However, these materials are susceptible to having large energy bandgaps, which prevent them from absorbing portions of the solar spectrum. Such materials could severely hamper the energy conversion efficiency if made into solar cells.

The researchers focused on a class of polymers called polythiophenes, derivatives of which have been measured to have high hole (or positive charge) mobilities. However, polythiophenes also have a large energy bandgap, which prevents them from absorbing light with red-orange wavelengths longer than 650 nm, thus reducing solar cell performance.

Previous work by other researchers has shown that this bandgap can be lowered by making modifications to the backbone of the polythiophene chain with groups of atoms that are able to accept charge. Even so, the power conversion efficiency of the resulting solar cells was below 2.3%, less than half of the best-performing polymer cells.

Chen and co-workers followed in the steps of their predecessors by modifying a polythiophene polymer. The result was a novel polymer called POD2T-DTBT that was measured to have a relatively low bandgap which resulted in an optical absorption range that extended to red-orange wavelengths of 780 nm, thus taking in more of the solar spectrum. At the same time, the hole mobility of the polymer was measured to be 0.20 cm2 per volt per second, comparable to unmodified polythiophene. This allowed for fabrication of high-performance transistors and solar cells. In particular, by combining POD2T-DTBT with the ester PC71BM, the research team constructed a solar cell with a power conversion efficiency of 6.26%, comparable to the efficiency of the best polymer cells to date.

This strong performance was drawn in part from the morphology of the thin films that resulted from the POD2T-DTBT / PC71BM mixture. Electron microscopy of the films showed that the two components were intimately mixed together: the long white fibers, which are 20–25 nm in width, correspond to the polymer, and the darker domains correspond to the ester (see image). The high-charge mobility of the POD2T-DTBT polymer itself also boosted performance.

References

Ong, K.-H. et al. A versatile low bandgap polymer for air-stable, high-mobility field-effect transistors and efficient polymer solar cells. Advanced Materials 23, 1409–1413 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>