Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymers: One stone, two birds

17.11.2011
A single polymer can be used to fabricate both thin-film transistors and solar cells

Polymers are the material of choice for making thin-film transistors and solar cells. They are also potentially suitable for manufacture using economical, high-throughput techniques, such as roll-to-roll and inkjet printing processes. However, transistors and solar cells have traditionally used different kinds of polymers, and this can severely complicate the fabrication process. Zhi-Kuan Chen at the A*STAR Institute of Materials Research and Engineering and co-workers have now developed a versatile polymer that is suitable for both kinds of devices.

Polymers with high-charge mobilities are ideal to use in the manufacture of transistors. However, these materials are susceptible to having large energy bandgaps, which prevent them from absorbing portions of the solar spectrum. Such materials could severely hamper the energy conversion efficiency if made into solar cells.

The researchers focused on a class of polymers called polythiophenes, derivatives of which have been measured to have high hole (or positive charge) mobilities. However, polythiophenes also have a large energy bandgap, which prevents them from absorbing light with red-orange wavelengths longer than 650 nm, thus reducing solar cell performance.

Previous work by other researchers has shown that this bandgap can be lowered by making modifications to the backbone of the polythiophene chain with groups of atoms that are able to accept charge. Even so, the power conversion efficiency of the resulting solar cells was below 2.3%, less than half of the best-performing polymer cells.

Chen and co-workers followed in the steps of their predecessors by modifying a polythiophene polymer. The result was a novel polymer called POD2T-DTBT that was measured to have a relatively low bandgap which resulted in an optical absorption range that extended to red-orange wavelengths of 780 nm, thus taking in more of the solar spectrum. At the same time, the hole mobility of the polymer was measured to be 0.20 cm2 per volt per second, comparable to unmodified polythiophene. This allowed for fabrication of high-performance transistors and solar cells. In particular, by combining POD2T-DTBT with the ester PC71BM, the research team constructed a solar cell with a power conversion efficiency of 6.26%, comparable to the efficiency of the best polymer cells to date.

This strong performance was drawn in part from the morphology of the thin films that resulted from the POD2T-DTBT / PC71BM mixture. Electron microscopy of the films showed that the two components were intimately mixed together: the long white fibers, which are 20–25 nm in width, correspond to the polymer, and the darker domains correspond to the ester (see image). The high-charge mobility of the POD2T-DTBT polymer itself also boosted performance.

References

Ong, K.-H. et al. A versatile low bandgap polymer for air-stable, high-mobility field-effect transistors and efficient polymer solar cells. Advanced Materials 23, 1409–1413 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Could this material enable autonomous vehicles to come to market sooner?
20.06.2018 | University of Southern California

nachricht An unlikely marriage among oxides
20.06.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

Electron sandwich doubles thermoelectric performance

20.06.2018 | Power and Electrical Engineering

Intelligent maps will help robots navigate in your home

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>