Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonics: From metallic foils to cancer treatment

12.01.2011
In a timely review paper, scientists from Japan, Germany, and Spain provide a highly relevant overview of the history, physical interpretation and applications of plasmons in metallic nanostructures.

The authors provide an extensive overview of the properties of plasmons in nanomaterials with emphasis on pioneering work of Ruthemann and Lang on electron energy loss spectroscopy (EELS) of electron motion in thin metal foils; recent infrared analysis of nanoscale metallic nanorods and nanoislands produced by ‘top-down’ photolithography; and the potential of metallic atomic wires for supporting plasmonic resonating modes. The review includes detailed explanations of plasmons for in vivo biosensing and nanoantennas.

A plasmon can be visualized as a collective oscillation of electronic ‘liquid’ in metals, similar to waves in lake, which are collective mode of the water molecules. Furthermore, surface plasmons are such oscillations confined to the surfaces of metals, which display a strong interaction with light, leading to the formation of so-called ‘polaritons’. Futuristic applications of plasmons include ideal lenses and even invisibility cloaks.

Research in the 1940s by Ruthemann and Lang on electrons flowing in thin metal foils using EELS yielded the first experimental sign of the presence of the theoretically predicted ‘plasma oscillations’ in metals. In 1957 Richie and colleagues predicted the existence of ‘surface localized’ plasmons, which was confirmed by Powell and Swan by EELS a few years later. In the 1960s researchers determined optical dispersion curves using optical spectroscopy, thereby opening up the possibility of optical applications of plasmon structures.

In this review, Nagao and colleagues offer insights into optical applications of localized surface plasmons in structures produced by photolithography. Specific examples include metallic nanoantenna detectors—where resonant excitation of light leads to ultrahigh electromagnetic field enhancement owing to plasmon polaritons localized at the surface of nanostructures; and optical interactions between arrays of nanorods for ‘surface enhanced Raman scattering’, which shows potential for in vivo biomolecular sensing. The authors also describe the fabrication of a prototype random-nanogap antenna for enhanced IR spectroscopy and in situ spectral monitoring of surface enhancement of infrared absorption during film growth.

Furthermore, the authors describe new trends in plasmonics research, in particular observation of plasmonic resonant modes in indium nanowires grown in ultrahigh vacuum on stepped silicon substrates. They predict that these nanowires will be used as building blocks for developing plasmonic devices of the future.

This review includes 86 references and 12 figures, providing an invaluable source of up-to-date information for newcomers and experts in this exciting field of research.

References and related websites

1. Tadaaki Nagao et al. Plasmons in nanoscale and atomic-scale system Science and Technology of Advanced Materials 11 (2010) No. 5, December. {http://iopscience.iop.org/1468-6996/11/5/054506}
Sci. Technol. Adv. Mater. Vol. 11 (2010) p. 054506
doi: 10.1088/1468-6996/11/5/054506
2. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

http://www.nims.go.jp/eng/research/mana/index.html

3. Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227,
D 69120, Heidelberg, Germany
http://www.uni-heidelberg.de/index_e.html
4. Depto. de Física de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais
Vasco, Apdo. 1072, 20080 San Sebastian/Donostia, Spain
http://www.ehu.es/p200-shenhm/en
5. Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018
San Sebastian/Donostia, Spain
http://dipc.ehu.es/
6. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
http://www.ikerbasque.net/
Media contacts:
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>