Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma technology for solvent-free utility wood

28.07.2010
The DURAWOOD research project modifies wood surfaces so that wood preservatives adhere to them better and makes it difficult for harmful fungi to colonise the wood. So-called plasma technology is a highly promising approach. ttz Bremerhaven is evaluating the effectiveness of the process with a genetic detection method.

In order to raise the competitiveness of wood compared to other materials, it is necessary to develop a cost-efficient method of wood protection which is free of toxic chemicals and nevertheless guarantees the wood's long durability.

DURAWOOD, a research project funded by the European Union, has set itself the objective of developing a cost-effective, ecological, and high-performance method: the so-called DURAWOOD process uses electrical gas discharge (plasma) to treat wooden surfaces. The aim is to alter the surface characteristics of the wood so that wood preservatives can adhere to it better and thus smaller amounts of fungicide be needed.

So that wood is attractive for customers, it must be possible to guarantee the durability of treated wooden facades for at least 5 to 8 years and without the need for any additional maintenance. New EU legislation (2004/42/EC) demands the replacement of solvent-based wood preservatives for exterior purposes. However, facades which have been treated with water-based preservatives are more susceptible to discolouring and damage from mould, blue-stain fungi, and other wood-decay fungi. The aim is for a pre-treatment of the wood by means of plasma tech-nology to improve the effectiveness of this water-soluble wood preservative.

Plasma technology seals the wood surface

The plasma technology is based on applying the principle of electrical gas discharge where a so-called plasma is temporarily produced. The plasma is a gas or gas mix which has been partly or fully ionised and thus contains free charge carriers such as ions, charged molecules or electrons. The plasma is produced with the aid of a DCSBD (Diffuse Coplanar Surface Barrier Discharge) electrode of the newest genera-tion. The wood is transported past the electrode and treated section by section with plasma. The aim of the plasma treatment is to change the characteristics of the wood surface, whereby two applications are used: On the one hand, the adhesion of coatings subsequently applied, such as water-based wood preservatives, is improved by means of a hydrophilisation of the wood surface, and on the other hand the wettability of the wood can be reduced by a marginal variation in the plasma parameters, as a result of which hydrophobic surfaces are produced which increase the water resistance of the wood.

Genetic detection method for mould

The DURAWOOD technology aims to facilitate a cost-efficient, durable, and environmentally friendly wood preservative and to strengthen the competitiveness of the European wood-processing industry. To test the efficiency of this new approach, the Molecular Genetics Department at ttz Bremerhaven is developing a rapid detection method for wood-decay fungi, with which the woods treated with the DURAWOOD process are being tested for their effective protection against fungi. For this purpose, pure cultures of the fungus being studied were incubated together with the wood either treated with DURAWOOD or untreated. The next step investigates how far the fungus has grown into the wood, using the highly sensitive PCR method, which is able to detect even only a few fungus cells.

ttz Bremerhaven is one of three research partners. Together with IRIS (Innovacio i Recerca Industrial i Sostenible, Barcelona), the Project Coordinator, and the Slovak University of Technology in Bratislava, ttz is a research service provider in the consortium. The consortium's industrial partners are composed on the one hand of the following wood-processing firms: Ing. Ján Šestina – SETA from Slovakia, Kartas Kontrplak Sanayi Ticaret from Turkey, and Aryecla, S.L. from Spain, and on the other hand of the following companies in the supply chain of the targeted technology: Plasma Technologic s.r.o. from the Czech Republic, which is specialised in plasma technology; PAM-ak s.r.o. from Slovakia and SETAS KIMYA SAN AS from Turkey are both manufacturers of wood coatings.

ttz Bremerhaven regards itself as an innovative provider of research services and operates in the field of application-oriented research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment, health and consulting services.

Contact:
Christian Colmer
Head of Communication and Media
ttz Bremerhaven
Fischkai 1
D-27572 Bremerhaven (Germany)
Tel.: +49 (0)471 48 32 - 124
Fax: +49 (0)471 48 32 - 129
ccolmer@ttz-bremerhaven.de

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>