Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma technology of the Fraunhofer FEP becoming established in the American packaging market

20.04.2012
Transparent packaging films with permeation barrier layers developed by the Fraunhofer FEP are enhancing the freshness of American foods. Moreover, the plasma technology from Dresden has further potential.

"This technology is the best one available today on clear barrier polypropylene packaging films“. Gabriel Durana, Product Manager for Special Technologies at Biofilm S.A. in Mexico, has high praise for the coating technology of the Fraunhofer Institute for Electron Beam and Plasma Technology FEP.


Plasma technology of Fraunhofer FEP is enhancing barrier properties of food packaging
© Fraunhofer FEP

In November last year Biofilm commissioned their second plant using the plasma technology from Dresden at its site in Altamira, Mexico. Since starting up the first plant in 2009, Biofilm has supplied the innovative film to manufacturers of snack products and baked goods in North America and Europe.

The film has become so popular amongst customers and has opened up new applications, like high-barrier microwavable packaging to give products a freshly-baked taste and feel, that a second production plant became necessary. The new plant is now fully operational and coats films up to 2.85 meters in width.

The vacuum roll-to-roll plants transport the several kilometers long polymer film at speeds of 36 km/h via roller systems through coating stations. Aluminum wire is constantly fed to these stations and is evaporated in hot ceramic crucibles. The trick for applying transparent barrier layers is accurate control of the amount of oxygen that is mixed with the aluminum vapor.

To achieve an optimum oxide layer, the oxygen requirement is identified directly by optical measurement systems which detect the transparency of the film and adjust the oxygen feed accordingly. In order to deposit a preferably dense layer on the film, and hence achieve an effective barrier, additional energy is introduced into the aluminum-oxygen vapor in a plasma zone before the vapor hits the substrate.

The result is a transparent packaging film with a very thin aluminum oxide layer, which is less permeable for oxygen and water vapor than a conventional film and hence extends the freshness and crispness of foods.

The Fraunhofer FEP developed this technology jointly with Biofilm from the concept stage right through to industrial implementation. Important here was to be able to develop and test the process under industry-relevant conditions in own pilot plants and hence considerably lower the risks associated with the scaling up of the process. The project work was carried out over several years and was funded by the Saxon State Ministry for Economic Affairs, Labor and Transport (SMWA) and the Federal Ministry of Education and Research (BMBF).

The project partners included Applied Materials, Inc. (coating equipment manufacturer), Vacuum Technologies Dresden (VTD) (producer of hollow cathode sources for the plasma activation), and ISA GmbH (provider of the power supply system).

However, it is not only packaging materials that can be improved using this plasma technology. Medical implants, solar cells, flexible electronics, and optical filters can also be refined using vacuum technologies such as sputtering, high-rate deposition, and high-rate PECVD. Dr. Nicolas Schiller, head of the Coating of Flexible Products business unit and deputy director of the Fraunhofer FEP, believes the technology has enormous potential for battery applications: „The special expertise of the Fraunhofer FEP is in using thin film technologies for precision, economical coating of large surfaces. There are certainly opportunities for this technology in the area of electromobility, where battery cost reduction is seen as a key step for commercialization.“

For further information please visit Fraunhofer FEP on May 1 – May 2 at the international trade fair on vacuum coating SVC 2012 in Santa Clara, USA, at booth no. 904.

Scientific contact:
Dr. Nicolas Schiller
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-131
nicolas.schiller@fep.fraunhofer.de

Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/en/Technologien.html

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>