Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma technology of the Fraunhofer FEP becoming established in the American packaging market

20.04.2012
Transparent packaging films with permeation barrier layers developed by the Fraunhofer FEP are enhancing the freshness of American foods. Moreover, the plasma technology from Dresden has further potential.

"This technology is the best one available today on clear barrier polypropylene packaging films“. Gabriel Durana, Product Manager for Special Technologies at Biofilm S.A. in Mexico, has high praise for the coating technology of the Fraunhofer Institute for Electron Beam and Plasma Technology FEP.


Plasma technology of Fraunhofer FEP is enhancing barrier properties of food packaging
© Fraunhofer FEP

In November last year Biofilm commissioned their second plant using the plasma technology from Dresden at its site in Altamira, Mexico. Since starting up the first plant in 2009, Biofilm has supplied the innovative film to manufacturers of snack products and baked goods in North America and Europe.

The film has become so popular amongst customers and has opened up new applications, like high-barrier microwavable packaging to give products a freshly-baked taste and feel, that a second production plant became necessary. The new plant is now fully operational and coats films up to 2.85 meters in width.

The vacuum roll-to-roll plants transport the several kilometers long polymer film at speeds of 36 km/h via roller systems through coating stations. Aluminum wire is constantly fed to these stations and is evaporated in hot ceramic crucibles. The trick for applying transparent barrier layers is accurate control of the amount of oxygen that is mixed with the aluminum vapor.

To achieve an optimum oxide layer, the oxygen requirement is identified directly by optical measurement systems which detect the transparency of the film and adjust the oxygen feed accordingly. In order to deposit a preferably dense layer on the film, and hence achieve an effective barrier, additional energy is introduced into the aluminum-oxygen vapor in a plasma zone before the vapor hits the substrate.

The result is a transparent packaging film with a very thin aluminum oxide layer, which is less permeable for oxygen and water vapor than a conventional film and hence extends the freshness and crispness of foods.

The Fraunhofer FEP developed this technology jointly with Biofilm from the concept stage right through to industrial implementation. Important here was to be able to develop and test the process under industry-relevant conditions in own pilot plants and hence considerably lower the risks associated with the scaling up of the process. The project work was carried out over several years and was funded by the Saxon State Ministry for Economic Affairs, Labor and Transport (SMWA) and the Federal Ministry of Education and Research (BMBF).

The project partners included Applied Materials, Inc. (coating equipment manufacturer), Vacuum Technologies Dresden (VTD) (producer of hollow cathode sources for the plasma activation), and ISA GmbH (provider of the power supply system).

However, it is not only packaging materials that can be improved using this plasma technology. Medical implants, solar cells, flexible electronics, and optical filters can also be refined using vacuum technologies such as sputtering, high-rate deposition, and high-rate PECVD. Dr. Nicolas Schiller, head of the Coating of Flexible Products business unit and deputy director of the Fraunhofer FEP, believes the technology has enormous potential for battery applications: „The special expertise of the Fraunhofer FEP is in using thin film technologies for precision, economical coating of large surfaces. There are certainly opportunities for this technology in the area of electromobility, where battery cost reduction is seen as a key step for commercialization.“

For further information please visit Fraunhofer FEP on May 1 – May 2 at the international trade fair on vacuum coating SVC 2012 in Santa Clara, USA, at booth no. 904.

Scientific contact:
Dr. Nicolas Schiller
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-131
nicolas.schiller@fep.fraunhofer.de

Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/en/Technologien.html

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>