Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma technology of the Fraunhofer FEP becoming established in the American packaging market

20.04.2012
Transparent packaging films with permeation barrier layers developed by the Fraunhofer FEP are enhancing the freshness of American foods. Moreover, the plasma technology from Dresden has further potential.

"This technology is the best one available today on clear barrier polypropylene packaging films“. Gabriel Durana, Product Manager for Special Technologies at Biofilm S.A. in Mexico, has high praise for the coating technology of the Fraunhofer Institute for Electron Beam and Plasma Technology FEP.


Plasma technology of Fraunhofer FEP is enhancing barrier properties of food packaging
© Fraunhofer FEP

In November last year Biofilm commissioned their second plant using the plasma technology from Dresden at its site in Altamira, Mexico. Since starting up the first plant in 2009, Biofilm has supplied the innovative film to manufacturers of snack products and baked goods in North America and Europe.

The film has become so popular amongst customers and has opened up new applications, like high-barrier microwavable packaging to give products a freshly-baked taste and feel, that a second production plant became necessary. The new plant is now fully operational and coats films up to 2.85 meters in width.

The vacuum roll-to-roll plants transport the several kilometers long polymer film at speeds of 36 km/h via roller systems through coating stations. Aluminum wire is constantly fed to these stations and is evaporated in hot ceramic crucibles. The trick for applying transparent barrier layers is accurate control of the amount of oxygen that is mixed with the aluminum vapor.

To achieve an optimum oxide layer, the oxygen requirement is identified directly by optical measurement systems which detect the transparency of the film and adjust the oxygen feed accordingly. In order to deposit a preferably dense layer on the film, and hence achieve an effective barrier, additional energy is introduced into the aluminum-oxygen vapor in a plasma zone before the vapor hits the substrate.

The result is a transparent packaging film with a very thin aluminum oxide layer, which is less permeable for oxygen and water vapor than a conventional film and hence extends the freshness and crispness of foods.

The Fraunhofer FEP developed this technology jointly with Biofilm from the concept stage right through to industrial implementation. Important here was to be able to develop and test the process under industry-relevant conditions in own pilot plants and hence considerably lower the risks associated with the scaling up of the process. The project work was carried out over several years and was funded by the Saxon State Ministry for Economic Affairs, Labor and Transport (SMWA) and the Federal Ministry of Education and Research (BMBF).

The project partners included Applied Materials, Inc. (coating equipment manufacturer), Vacuum Technologies Dresden (VTD) (producer of hollow cathode sources for the plasma activation), and ISA GmbH (provider of the power supply system).

However, it is not only packaging materials that can be improved using this plasma technology. Medical implants, solar cells, flexible electronics, and optical filters can also be refined using vacuum technologies such as sputtering, high-rate deposition, and high-rate PECVD. Dr. Nicolas Schiller, head of the Coating of Flexible Products business unit and deputy director of the Fraunhofer FEP, believes the technology has enormous potential for battery applications: „The special expertise of the Fraunhofer FEP is in using thin film technologies for precision, economical coating of large surfaces. There are certainly opportunities for this technology in the area of electromobility, where battery cost reduction is seen as a key step for commercialization.“

For further information please visit Fraunhofer FEP on May 1 – May 2 at the international trade fair on vacuum coating SVC 2012 in Santa Clara, USA, at booth no. 904.

Scientific contact:
Dr. Nicolas Schiller
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-131
nicolas.schiller@fep.fraunhofer.de

Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/en/Technologien.html

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>