Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma processes paving the way to high performance cutting tools

12.09.2013
PVD coatings for sophisticated metal cutting operations benefit from the advanced state of development of plasma technology at Fraunhofer FEP.

Metal cutting operations play an especially important role in modern industrial production processes. Based on the tremendous development of multi-axis machine tools, cutting operations represent an ever increasing part of manufacturing process steps.


PVD-coatings for high performance cutting Tools

Instead of preparing specific tools and forms for different work pieces, these are produced in universal machining centers using CAD/CAM control and, in the course of time, a huge amount of cutting inserts.

To realize ever faster production and, at the same time, to guarantee an excellent quality level of the treated workpiece, the development of high performance cutting tools with tailored, wear-resistant coatings has become a key factor for the tool industry.

Multilayered PVD coatings ensure superior wear resistance even under severe cutting conditions. Tailored compositions and architecture of the coatings help to adapt them to tool materials and to the tool geometry used in specific cutting operations, as well as to the work materials to be treated. High power pulse magnetron sputtering (PMS) offers complete flexibility in developing such coatings, be it with respect to the coating material or to the coating architecture. This holds for both high speed and high precision cutting tools.

The pulsed magnetron sputtering process allows deposition of extremely dense and smooth layers free of droplets. By co-sputtering of different materials in a reactive gas atmosphere, a variety of layer compositions, including periodic and aperiodic sequences and graded transitions between individual layers can be synthesized. Single-phase nanocrystalline oxides especially show high thermal stability and chemical inertness. Utilizing advanced pulsed power supplies and a fast feedback control, ternary oxide coatings can also be deposited in long-term, stable deposition processes, resulting in pure single phase coatings. Intrinsic and thermally induced compressive stresses are moderate, and they enhance the wear resistance.

A highly effective plasma pretreatment guarantees excellent adhesion of the coatings. The flange-mounted plasma source LAVOPLAS has been developed to create a dense plasma in a volume corresponding to a typical industrial size batch coating device. It can be used for substrate etching as well as for plasma-activated deposition processes when a high flux of ions is required. The energy of the charged particles can be influenced by a substrate bias voltage to maximize the effect of the preferred ionization or excitation processes. In combination with high power pulsed sputtering, a unique technology sequence for the coating of tools with high-end layer-stacks is available.

Wear-resistant layers are just one example demonstrating the capabilities of plasma and electron beam processes developed at Fraunhofer FEP. You can find more details and a variety of other application examples on our website www.fep.fraunhofer.de, or visit us at the EMO fair in Hannover, at stand no. 54, hall 13, from September 16 – 20, 2013. Together with other Fraunhofer partners we will demonstrate the benefits of advanced plasma techniques for the coating of tools and parts. We are looking forward to welcoming you and discussing your requirements.

Press contact:
Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de

Winterbergstraße 28 | 01277 Dresden | Gemany | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/components

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>