Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma processes paving the way to high performance cutting tools

12.09.2013
PVD coatings for sophisticated metal cutting operations benefit from the advanced state of development of plasma technology at Fraunhofer FEP.

Metal cutting operations play an especially important role in modern industrial production processes. Based on the tremendous development of multi-axis machine tools, cutting operations represent an ever increasing part of manufacturing process steps.


PVD-coatings for high performance cutting Tools

Instead of preparing specific tools and forms for different work pieces, these are produced in universal machining centers using CAD/CAM control and, in the course of time, a huge amount of cutting inserts.

To realize ever faster production and, at the same time, to guarantee an excellent quality level of the treated workpiece, the development of high performance cutting tools with tailored, wear-resistant coatings has become a key factor for the tool industry.

Multilayered PVD coatings ensure superior wear resistance even under severe cutting conditions. Tailored compositions and architecture of the coatings help to adapt them to tool materials and to the tool geometry used in specific cutting operations, as well as to the work materials to be treated. High power pulse magnetron sputtering (PMS) offers complete flexibility in developing such coatings, be it with respect to the coating material or to the coating architecture. This holds for both high speed and high precision cutting tools.

The pulsed magnetron sputtering process allows deposition of extremely dense and smooth layers free of droplets. By co-sputtering of different materials in a reactive gas atmosphere, a variety of layer compositions, including periodic and aperiodic sequences and graded transitions between individual layers can be synthesized. Single-phase nanocrystalline oxides especially show high thermal stability and chemical inertness. Utilizing advanced pulsed power supplies and a fast feedback control, ternary oxide coatings can also be deposited in long-term, stable deposition processes, resulting in pure single phase coatings. Intrinsic and thermally induced compressive stresses are moderate, and they enhance the wear resistance.

A highly effective plasma pretreatment guarantees excellent adhesion of the coatings. The flange-mounted plasma source LAVOPLAS has been developed to create a dense plasma in a volume corresponding to a typical industrial size batch coating device. It can be used for substrate etching as well as for plasma-activated deposition processes when a high flux of ions is required. The energy of the charged particles can be influenced by a substrate bias voltage to maximize the effect of the preferred ionization or excitation processes. In combination with high power pulsed sputtering, a unique technology sequence for the coating of tools with high-end layer-stacks is available.

Wear-resistant layers are just one example demonstrating the capabilities of plasma and electron beam processes developed at Fraunhofer FEP. You can find more details and a variety of other application examples on our website www.fep.fraunhofer.de, or visit us at the EMO fair in Hannover, at stand no. 54, hall 13, from September 16 – 20, 2013. Together with other Fraunhofer partners we will demonstrate the benefits of advanced plasma techniques for the coating of tools and parts. We are looking forward to welcoming you and discussing your requirements.

Press contact:
Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de

Winterbergstraße 28 | 01277 Dresden | Gemany | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/components

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>