Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma processes paving the way to high performance cutting tools

12.09.2013
PVD coatings for sophisticated metal cutting operations benefit from the advanced state of development of plasma technology at Fraunhofer FEP.

Metal cutting operations play an especially important role in modern industrial production processes. Based on the tremendous development of multi-axis machine tools, cutting operations represent an ever increasing part of manufacturing process steps.


PVD-coatings for high performance cutting Tools

Instead of preparing specific tools and forms for different work pieces, these are produced in universal machining centers using CAD/CAM control and, in the course of time, a huge amount of cutting inserts.

To realize ever faster production and, at the same time, to guarantee an excellent quality level of the treated workpiece, the development of high performance cutting tools with tailored, wear-resistant coatings has become a key factor for the tool industry.

Multilayered PVD coatings ensure superior wear resistance even under severe cutting conditions. Tailored compositions and architecture of the coatings help to adapt them to tool materials and to the tool geometry used in specific cutting operations, as well as to the work materials to be treated. High power pulse magnetron sputtering (PMS) offers complete flexibility in developing such coatings, be it with respect to the coating material or to the coating architecture. This holds for both high speed and high precision cutting tools.

The pulsed magnetron sputtering process allows deposition of extremely dense and smooth layers free of droplets. By co-sputtering of different materials in a reactive gas atmosphere, a variety of layer compositions, including periodic and aperiodic sequences and graded transitions between individual layers can be synthesized. Single-phase nanocrystalline oxides especially show high thermal stability and chemical inertness. Utilizing advanced pulsed power supplies and a fast feedback control, ternary oxide coatings can also be deposited in long-term, stable deposition processes, resulting in pure single phase coatings. Intrinsic and thermally induced compressive stresses are moderate, and they enhance the wear resistance.

A highly effective plasma pretreatment guarantees excellent adhesion of the coatings. The flange-mounted plasma source LAVOPLAS has been developed to create a dense plasma in a volume corresponding to a typical industrial size batch coating device. It can be used for substrate etching as well as for plasma-activated deposition processes when a high flux of ions is required. The energy of the charged particles can be influenced by a substrate bias voltage to maximize the effect of the preferred ionization or excitation processes. In combination with high power pulsed sputtering, a unique technology sequence for the coating of tools with high-end layer-stacks is available.

Wear-resistant layers are just one example demonstrating the capabilities of plasma and electron beam processes developed at Fraunhofer FEP. You can find more details and a variety of other application examples on our website www.fep.fraunhofer.de, or visit us at the EMO fair in Hannover, at stand no. 54, hall 13, from September 16 – 20, 2013. Together with other Fraunhofer partners we will demonstrate the benefits of advanced plasma techniques for the coating of tools and parts. We are looking forward to welcoming you and discussing your requirements.

Press contact:
Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de

Winterbergstraße 28 | 01277 Dresden | Gemany | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/components

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>