Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant with 'eggbeater' testure inspires waterproof coating

11.11.2011
A floating weed that clogs waterways around the world has at least one redeeming feature: It’s inspired a high-tech waterproof coating intended for boats and submarines.

The Brazilian fern Salvinia molesta has proliferated around the Americas and Australia in part because its surface is dotted with oddly shaped hairs that trap air, reduce friction, and help the plant stay afloat.

In the November 1 issue of the Journal of Colloid and Interface Science, Ohio State University engineers describe how they recreated the texture, which resembles a carpet of tiny eggbeater-shaped fibers. The plastic coating they created in the laboratory is soft and plush, like a microscopic shag carpet.

In nature, air pockets trapped at the base of Salvinia’s hairs reduce friction in the water and help the plant float, while a sticky region at the tips of the eggbeaters clings lightly to the water, providing stability.

It’s the combination of slippery and sticky surfaces that makes the texture so special, said Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State.

“The Salvinia leaf is an amazing hybrid structure. The sides of the hairs are hydrophobic – in nature, they’re covered with wax – which prevents water from touching the leaves and traps air beneath the eggbeater shape at the top. The trapped air gives the plant buoyancy,” he said.

“But the tops of the hairs are hydrophilic. They stick to the water just a tiny bit, which keeps the plant stable on the water surface.”

In tests, the coating performed just as the Salvinia hairs do in nature. The bases of the hairs were slippery, while the tips of the hairs were sticky. Water droplets did not penetrate between the hairs, but instead clung to the tops of the eggbeater structures – even when the coating sample was turned on its side to a 90-degree vertical.

With commercial development, the coating could reduce drag and boost buoyancy and stability on boats and submarines, Bhushan said.

Bhushan and master’s student Jams Hunt compared the stickiness of their plastic coating to the stickiness of the natural Salvinia leaf using an atomic force microscope. The two surfaces performed nearly identically, with the plastic coating generating an adhesive force of 201 nanoNewtons (billionths of a Newton) and the leaf generating 207 nanoNewtons.

That’s a very tiny force compared to familiar adhesives such as transparent tape or even masking tape. But the adhesion is similar to that of another natural surface studied by Bhushan and other researchers: gecko feet.

“I’ve studied the gecko feet, which are sticky, and the lotus leaf, which is slippery,” Bhushan said. “Salvinia combines aspects of both.”

Bhushan develops biomimetic structures – artificial structures created in the lab to mimic structures found in nature. The gecko feet inspired him to investigate a repositionable, “smart” adhesive, and the lotus leaf inspired the notion of glass that repels water and dirt.

He came to study Salvinia through a colleague in the university’s Biological Sciences Greenhouse, who provided samples of the plant for the study.

Salvinia molesta, also known as giant salvinia, is native to Brazil, and is a popular plant for home aquariums and decorative ponds around the world. It needs no dirt, but lives solely in the water – even moving water such as rivers and lakes.

At some point, the hearty plant escaped from people’s homes into the wild. Now it has proliferated into commercial waterways in North America, South America, and Australia, where it has become an invasive species.

While the plant is a nuisance to ships today, it could ultimately provide a benefit if a commercial coating based on its texture became available. Bhushan has no plans to commercialize it himself, though.

“With this study, we’ve gotten deep insight into a very simple concept [how the Salvinia leaf works]. That’s where the fun is,” he said. “Besides, I’ve already moved on to studying shark skin.”

Contact: Bharat Bhushan, (614) 292-0651; Bhushan.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Bharat Bhushan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>