Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant with 'eggbeater' testure inspires waterproof coating

11.11.2011
A floating weed that clogs waterways around the world has at least one redeeming feature: It’s inspired a high-tech waterproof coating intended for boats and submarines.

The Brazilian fern Salvinia molesta has proliferated around the Americas and Australia in part because its surface is dotted with oddly shaped hairs that trap air, reduce friction, and help the plant stay afloat.

In the November 1 issue of the Journal of Colloid and Interface Science, Ohio State University engineers describe how they recreated the texture, which resembles a carpet of tiny eggbeater-shaped fibers. The plastic coating they created in the laboratory is soft and plush, like a microscopic shag carpet.

In nature, air pockets trapped at the base of Salvinia’s hairs reduce friction in the water and help the plant float, while a sticky region at the tips of the eggbeaters clings lightly to the water, providing stability.

It’s the combination of slippery and sticky surfaces that makes the texture so special, said Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State.

“The Salvinia leaf is an amazing hybrid structure. The sides of the hairs are hydrophobic – in nature, they’re covered with wax – which prevents water from touching the leaves and traps air beneath the eggbeater shape at the top. The trapped air gives the plant buoyancy,” he said.

“But the tops of the hairs are hydrophilic. They stick to the water just a tiny bit, which keeps the plant stable on the water surface.”

In tests, the coating performed just as the Salvinia hairs do in nature. The bases of the hairs were slippery, while the tips of the hairs were sticky. Water droplets did not penetrate between the hairs, but instead clung to the tops of the eggbeater structures – even when the coating sample was turned on its side to a 90-degree vertical.

With commercial development, the coating could reduce drag and boost buoyancy and stability on boats and submarines, Bhushan said.

Bhushan and master’s student Jams Hunt compared the stickiness of their plastic coating to the stickiness of the natural Salvinia leaf using an atomic force microscope. The two surfaces performed nearly identically, with the plastic coating generating an adhesive force of 201 nanoNewtons (billionths of a Newton) and the leaf generating 207 nanoNewtons.

That’s a very tiny force compared to familiar adhesives such as transparent tape or even masking tape. But the adhesion is similar to that of another natural surface studied by Bhushan and other researchers: gecko feet.

“I’ve studied the gecko feet, which are sticky, and the lotus leaf, which is slippery,” Bhushan said. “Salvinia combines aspects of both.”

Bhushan develops biomimetic structures – artificial structures created in the lab to mimic structures found in nature. The gecko feet inspired him to investigate a repositionable, “smart” adhesive, and the lotus leaf inspired the notion of glass that repels water and dirt.

He came to study Salvinia through a colleague in the university’s Biological Sciences Greenhouse, who provided samples of the plant for the study.

Salvinia molesta, also known as giant salvinia, is native to Brazil, and is a popular plant for home aquariums and decorative ponds around the world. It needs no dirt, but lives solely in the water – even moving water such as rivers and lakes.

At some point, the hearty plant escaped from people’s homes into the wild. Now it has proliferated into commercial waterways in North America, South America, and Australia, where it has become an invasive species.

While the plant is a nuisance to ships today, it could ultimately provide a benefit if a commercial coating based on its texture became available. Bhushan has no plans to commercialize it himself, though.

“With this study, we’ve gotten deep insight into a very simple concept [how the Salvinia leaf works]. That’s where the fun is,” he said. “Besides, I’ve already moved on to studying shark skin.”

Contact: Bharat Bhushan, (614) 292-0651; Bhushan.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Bharat Bhushan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>