Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers harness carbon nanomaterials for drug delivery systems, oxygen sensors

20.08.2009
Researchers describe carbon nanocapsules for drug and energy storage in Advanced Materials, creation of highly sensitive oxygen sensors in Nature Chemistry

Two nanoscale devices recently reported by University of Pittsburgh researchers in two separate journals harness the potential of carbon nanomaterials to enhance technologies for drug or imaging agent delivery and energy storage systems, in one case, and, in the other, bolster the sensitivity of oxygen sensors essential in confined settings, from mines to spacecrafts.

In a report published online by Advanced Materials Aug. 12, a team led by chemistry professors Alexander Star and Stéphane Petoud in Pitt's School of Arts and Sciences describe the creation of nanosized capsules that are universally compatible with a range of substances, particularly related to medicine and energy. When applied to medicine, the tiny vessels can potentially carry a sizable "cargo" of anticancer drugs or medical-imaging agents, and could be steered via antibodies and biological molecules to specific locations within the human body. Energy applications include the storage of lithium and hydrogen in batteries and fuel cells. Pitt graduate chemistry student Brett Allen was the paper's lead author. The project also included chemistry graduate student Chad Shade and Adrienne Yingling, now a graduate of Pitt's PhD chemistry program.

In a separate paper appearing online in Nature Chemistry Aug. 16, another team headed by Star and Petoud revealed the development of a highly sensitive, fluorescent oxygen sensor that can detect minute amounts of the gas. Oxygen detectors are important safety devices in mines, aircraft, submarines, and other confined spaces, the researchers note. The sensor consists of carbon nanotubes coated with a luminescent compound incorporating europium, a reactive metal found in fluorescent bulbs, television/computer screens, and lasers, among other applications.

The researchers gauged oxygen levels by measuring the intensity of its glow when exposed to ultraviolent light and the tubes' change in electrical conductance. The tubes demonstrated sensitivity to oxygen concentrations as low as 5 percent (normal atmospheric concentration is around 20 percent) with the team calculating that it can indicate a level as low as 0.4 percent, and they were unaffected by other atmospheric gases, such as carbon dioxide and nitrogen. The second paper was authored by Shade and Pitt chemistry graduate students Douglas Kauffman and Hyounsoo Uh.

For both technologies, the Pitt teams worked with carbon nanomaterials to create enhanced versions of existing technologies. For instance, the oxygen sensor combines the small scale of carbon nanotubes—they are one-atom thick rolls of graphite 100,000 times smaller than a human hair—with the reactivity of the europium compound coating to produce a platform for low-cost, room-temperature detectors that are notably sensitive to oxygen but less complicated than existing sensors, the researchers write in Nature Chemistry.

Regarding the nanocapsules described in Advanced Materials, existing technologies are typically constructed of polymers that are permeable like a sponge and can result in leakage, Star explained. Additionally, each capsule must be tailored to its particular cargo, he said. The Pitt version employs graphite carbon shells bonded with glutaraldehyde—a common biological adhesive—creating a hollow storage space. More importantly, the graphite shells are chemically inactive and are thus compatible with any cargo substance without costly and time-consuming chemical preparation, Star said.

"For decades, researchers have been searching for an optimal vessel for storing and transporting a variety of cargo to specified locations," Star said. "Our devices have the potential to be universal delivery vehicles for a range of materials. Our next steps will focus on controlling how and when the nanocapsules open by using different stimuli such as pH, light, and chemical agents."

To illustrate the capsules' adaptability, the team loaded them with a luminescent imaging agent developed in Petoud's lab made of zinc sulfide semiconductor nanocrystals incorporating terbium, a metal chemically similar to europium. Once in the body, the substance would emit a unique light that allows easier detection and a better image, Petoud said. But the inorganic nanocrystals have to be prepared before being introduced to a biological environment such as the body and is difficult and time-consuming. The graphite nanocapsules, however, could hold and transport the solution with no preparation.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>