Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Unlock the Mysteries of Crack Formation

09.03.2010
In research published in the March 4 issue of the journal Nature, Northeastern University physicists have pioneered the development of large-scale computer simulations to assess how cracks form and proliferate in materials ranging from steel and glass to nanostructures and human bones.

For years, scientists have tried to understand the propagation of cracks and how they affect the materials in which they form, said Alain Karma, distinguished physics professor and lead investigator on the project.

“We now better understand what path cracks follow as they propagate in a stressed material,” said Karma, director of Northeastern’s Center for Interdisciplinary Research on Complex Systems. “This knowledge will allow us to develop new materials — for advanced aircraft turbine blades, micro-electronic circuits and artificial bone — that better withstand destruction caused by cracks.”

Karma and the research team started out by examining the combined effects of two types of stress on crack propagation: shearing and tension. Shearing occurs naturally when material is twisted out of shape while tension occurs when material is pulled out of shape. The combination of shearing and tension causes crack instability. The mechanism for how this instability develops and spreads, however, remained elusive until Karma utilized the power of a computer.

Large-scale computer simulations yielded the surprising result that shearing and tension cause cracks to take the shape of a helix. Based on the simulation results, Karma and his team developed a theoretical equation to predict how the helix would rotate, expand and multiply in different materials.

“The fundamental question we are answering is how these cracks grow inside materials, said Karma. “Now that we have that information, we can develop new materials to withstand cracks, as well as more effectively reduce the damage of cracks once they form.”

The research could yield innovations in the production of lighter automobile and aircraft parts that reduce energy consumption, and composite artificial bones that will not fracture when inside the body. The results also have implications for understanding the evolution of geologic faults and fractures in the earth’s crust.

Jenny Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>