Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Light “Magnetic Fire” to Reveal Energy’s Path

15.05.2013
New York University physicists have uncovered how energy is released and dispersed in magnetic materials in a process akin to the spread of forest fires, a finding that has the potential to deepen our understanding of self-sustained chemical reactions.
The study, which appears in the journal Physical Review Letters, also included researchers from the University of Barcelona, City College of New York, and the University of Florida. It may be downloaded here: http://bit.ly/18FKwFO.

Forest fires spread because an initial flame or spark will heat a substance—a trunk or branch—causing it to burn, which releases heat that causes the fire to spread to other trunks or branches, turning a small spark into a self-sustained, propagating front of fire that can be deadly and is irreversible.

In the Physical Review Letters study, the researchers sought to understand how energy is sustained and spreads in magnetic materials—“magnetic fire.” Such knowledge is important in designing magnetic materials for energy storage applications. This is because magnetic fire can lead to a rapid and uncontrolled release of stored energy, producing significant energy loss in, for example, an electrical generator.

Research on bursts of energy within magnetic systems dates back two decades. But scientists haven’t been able to measure and understand what prompts this phenomenon, known as “magnetic deflagration.”

Part of this mystery lies in the nature of chemical reactions. In such reactions, which produce heat, the energy released is determined by the chemical constituents and cannot be easily varied. What is known as an “activation energy” is typically necessary to start a chemical reaction; energy is then released as the reaction proceeds. In other words, scientists have concluded that a spark is needed to begin this process—much the same way a forest fire begins with a single lit match.

But in magnetic materials the energies can be manipulated by magnetic fields and are therefore very easily varied in an experiment. Thus the activation energy and the energy released are controllable, enabling systematic studies of the physical mechanisms of energy flow.

To achieve this, the researchers surmised they could produce such a “spark” through a series of spins—the chemical equivalent of striking a match. In this case, they employed small single crystals of a molecular magnet— each magnetic molecule being just one billionth of a meter—that could be magnetized, much like the needle of a compass. The researchers provided a pulse of heat as the spark, causing molecular spins near the heaters to flip in a magnetic field, a process that released energy and transmitted it to nearby material.

“When the molecules’ spins are aligned opposite the applied field direction, they possess a high level of energy,” explained Andrew Kent, a professor in NYU’s Department of Physics and the study’s senior researcher. “And then when the spins ‘flip,’ energy is released and dispersed into surrounding magnetic material that can cause a runaway reaction.”

Moreover, the scientists were able to control the speed of this process by adjusting the make-up of the magnetic field in their experiments. Through this detailed examination, they could see under what conditions energy is released and how it propagates.

“These are exciting results and ones that have prompted us to further consider whether a spark is even necessary to start a magnetic fire,” added Kent. “We hope to observe and study situations in which the fire starts spontaneously, without a spark.”

The study was conducted at NYU by Pradeep Subedi and Saul Velez, both doctoral candidates, as well as Ferran Macia, a postdoctoral researcher, and included: Shiqi Li, a City College of New York (CCNY) doctoral candidate; Myriam Sarachik, a professor at CCNY; Javier Tejada, a professor at the University of Barcelona; Shreya Mukherjee, a University of Florida doctoral candidate; and George Christou, a professor at University of Florida.

The research was supported by a grant from the National Science Foundation’s Division of Materials Research (DMR-1006575, DMR-0451605) and Division of Chemistry (CHE-0910472).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>